STANDARD COTTON FABRICS


TEXTILE TERMS & DEFINITIONS

Armure
Fibre : Cotton, silk, wool, rayon, synthetics, and blends.
Weave : Plain, twill, or rib, background often has a small design either jacquard or dobby made with warp floats on surface giving a raised effect.
Characteristics : Design is often in two colours and raised. The name was derived from original fabric which was woven with a small interlaced design of chain armor and used for military equipment during the Crusades.
Uses : a rich looking dress fabric, draperies, or upholstery.
Batiste
Fibre : Cotton, also rayon and wool.
Weave : Plain
Characteristics : Named after Jean Baptiste, a French linen weaver. Light weight, soft, semi-sheer fabric which resembles nainsook, but finer. It belongs to the lawn family; almost transparent. It is made of tightly twisted, combed yarns and mercerized finish. Sometimes it is printed or embroidered. In a heavier weight, it is used for foundation garments and linings in a plain, figured, striped, or flowered design. Considered similar to nainsook but finer and lighter in weight. Now usually made of 100% polyester distinguished by slubs in filling direction.

Birdseye
Fibre : In cotton and Linen or blend of rayon staple and cotton.
Weave : Usually dobby
Characteristics : Very soft, light weight, and absorbent. Woven with a loosely twisted filling to increase absorbency. Launders very well. No starch is applied because the absorption properties must be of the best. Material must be free from any foreign matter. It is also called “diaper cloth” and is used for that purpose as well as very good towelling. Also “novelty” birdseye effects used as summer dress fabrics.

Broadcloth
Fibre : Cotton and silk, and rayon. Very different than wool broadcloth.
Weave : Plain weave and in most cotton broadcloths made with a very fine crosswise rib weave.
Characteristics : Originally indicated a cloth woven on a wide loom. Very closely woven and in cotton, made from either carded or combed yarns. The filling is heavier and has less twist. It is finer than poplin when made with a crosswise rib and it is lustrous and soft with a good texture. Thread count ranges from high quality 144 x 6 count down to 80 x 60. Has a smooth finish. May be bleached, dyed, or printed; also is often mercerized. Wears very well. If not of a high quality or treated it wrinkles very badly. Finest quality made from Egyptain or combed pima cotton – also sea island.
Uses : Shirts, dresses, particularly the tailored type in plain colours, blouses, summer wear of all kinds.

Brocade
Fibre : Cotton brocade often has the ground of cotton and the pattern of rayon and silk. Pattern is in low relief.
Weave : Jacquard and dobby
Characteristics : Rich, heavy, elaborate design effect. Sometimes with coloured or metallic threads making the design usually against a satin weave background. This makes the figures stand out. The figures in brocade are rather loose, while in damask the figure threads are actually bound into the material. The pattern may be satin on a twill ground or twill on a satin ground. Often reversible. The motifs may be of flowers, foliage, Scrollwork, Pastoral scenes, or other designs. The price range is wide. Generally reputed to have been developed from the latin name “brocade” which means to figure.
Uses : All types of after 5 wear, church vestments, interior furnishings, and state robes.

Buckram
Fibre : Cotton, some in linen, synthetics.
Weave : Plain
Characteristics : Cheap, low-textured, loose weave, very heavily sized and stiff. Also, 2 fabrics are glued together; one is open weave and the other much finer. Some is also made in linen in a single fabric. Also called crinoline book muslin or book binding. Name from Bokhara in Southern Russia, where it was first made.
Uses : Used for interlinings and all kinds of stiffening in clothes, book binding, and for millinery (because it can be moistened and shaped). Used to give stiffness to leather garments not as stiff and often coloured is called “tarlatan”. Softens with heat. Can be shaped while warm.

Calico
Fibre : Cotton
Weave : Plain – usually a low count.
Characteristics : Originated in Calcutta, India, and is one of the oldest cottons. Rather coarse and light in weight. Pattern is printed on one side by discharge or resist printing. It is not always fast in colours. Sized for crispness but washes out and requires starch each time. Designs are often geometric in shape, but originally elaborate designs of birds, trees, and flowers. Inexpensive. Similar to percale. Very little on the market today, but the designs are still in use on other fabrics and sold as “calico print.”
Uses : Housedresses, aprons, patchwork quilts.

Cambric
Fibre : Cotton, also linen.
Weave : Plain
Characteristics : Soft, closely woven, light. Either bleached or piece dyed. Highly mercerized, lint free. Calendered on the right side with a slight gloss. Lower qualities have a smooth bright finish. Similar to batiste but is stiffer and fewer slubs. Launders very well. Has good body, sews and finishes well. Originally made in Cambria, France of linen and used for Church embroidery and table linens.
Uses : Handkerchiefs, underwear, slips, nightgowns, children’s dresses, aprons, shirts and blouses.

Candlewick Fabric
Fibre : Cotton – also wool.
Weave : Plain
Characteristics : An unbleached muslin bed sheeting (also called Kraft muslin) used as a base fabric on which a chenille effect is formed by application of candlewick (heavy plied yarn) loops, which are then cut to give the fuzzy effect and cut yarn appearance of true chenille yarn. May be uncut also. (True chenille is a cotton, wool, silk, or rayon yarn which has a pile protruding all around at slight angles and stimulates a caterpillar. Chenille is the French word for caterpillar.)
Uses : Bedspreads, drapes, housecoats, beach wear.

Canton Flannel
Fibre : Cotton
Weave : Four harness warp-faced twill weave.
Characteristics : The filling yarn is a very loosely twisted and soft and later brushed to produced a soft nap on the back, the warp is medium in size. The face is a twill. Heavy, warm, strong and absorbent. Named for Canton, China where it was first made. Comes bleached, unbleached, dyed, and some is printed.
Uses : Interlinings, sleeping garments, linings, coverings, work gloves.

Chambray

Fibre : Cotton
Weave : Plain weave or dobby designs on a plain-weave ground.
Characteristics : Made with a dyed warp and a white or unbleached filling. Both carded and combed yarns used. Has a white selvedge. Some woven with alternating white and coloured warp. “Faded” look. Has very soft colouring. Some made with stripes, checks or embroidered. Smooth, strong, closely woven, soft and has a slight lustre. Wears very well, easy to sew, and launders well. If not crease resistant, it wrinkles easily. Originated in Cobrai, France it was first made for sunbonnets.
Uses : Children’s wear, dresses, shirts and blouses, aprons, all kinds of sportswear.

Chamois Cloth
Fibre : Cotton
Weave : Plain
Characteristics : Fabric is napped, sheared, and dyed to simulate chamois leather. It is stiffer than kasha and thicker, softer and more durable than flannelette. Must be designated as “cotton chamoise-colour cloth”.
Uses : Dusters, interlining, storage bags for articles to prevent scratching.

Chamoisette
Fibre : Cotton, also rayon and nylon.
Weave : Knitted, double knit construction.
Characteristics : A fine, firmly knit fabric. Has a vary short soft nap. Wears well. Nylon chamoisette is more often called “glove silk”.
Uses : Gloves.

Cheesecloth
Fibre : Cotton
Weave : Plain
Characteristics : Originally used as a wrapping material for pressing cheese. Loosely woven, thin, light in weight, open in construction, and soft. Carded yarns are always used. It is also called gauze weave. When woven in 36″ widths it is called tobacco cloth, When an applied finish is added, it is called buckram, crinoline, or bunting.
Uses : In the grey cloth, it is used for covering tobacco plants, tea bags and wiping cloths.
Finished cloth is used for curtains, bandages, dust cloths, cheap bunting, hat lining, surgical gauze, fly nets, food wrapping, e.g. meat and cheese, costumes and basket tops.

Chenille Fabric
Fibre : Cotton and any of the main textile fibres.
Weave : Mostly plain weave.
Characteristics : Warp yarn of any major textile fibre. Filling of chenille yarns (Has a pile protruding all around at right angles). The word is French for caterpillar and fabric looks hairy. Do not confuse with tufted effects obtained without the use of true Chenille filling.
Uses : Millinery, rugs, decorative fabrics, trimmings, upholstery.

Chinchilla
Fibre : Cotton or wool, and some manmade and synthetics.
Weave : Sateen or twill construction with extra fillings for long floats.
Characteristics : Does not resemble true chinchillas fur. Has small nubs on the surface of the fabric which are made by the chincilla machine. It attacks the face and causes the long floats to be worked into nubs and balls. Cotton warp is often used because it cannot show from either side. Made in medium and heavy weights. Very warm and cozy fabrics. Takes its name from Chinchilla Spain where it was invented.
Uses : In cotton, used for baby’s blankets and bunting bags.

Chino
Fibre : Cotton
Weave : Twill (left hand)
Characteristics : Combined two-ply warp and filling. Has a sheen that remains. Fabric was purchased in China (thus the name) by the U.S. Army for uniforms. Originally used for army cloth in England many years before and dyed olive-drab. Fabric is mercerized and sanforized. Washs and wears extremely well with a minimum of care.
Uses : Army uniforms, summer suits and dresses, sportswear.

Chintz
Fibre : Cotton
Weave : Plain
Characteristics : Has bright gay figures, large flower designs, birds and other designs. Also comes in plain colours. Several types of glaze. The wax and starch glaze produced by friction or glazing calendars will wash out. The resin glaze finish will not wash out and withstand drycleaning. Also comes semi-glazed. Unglazed chintz is called cretonne. Named from the Indian word “Chint” meaning ” broad, gaudily printed fabric”.
Uses : Draperies, slipcovers, dresses, sportwear.

Corduroy
Fibre : Cotton, rayon, and other textile fibres.
Weave : Filling Pile with both plain and twill back.
Characteristics : Made with an extra filling yarn. In the velvet family of fabrics. Has narrow medium and wide wales, also thick n’thin or checkerboard patterns. Wales have different widths and depths. Has to be cut all one way with pile running up. Most of it is washable and wears very well. Has a soft lustre.
Uses : Children’s clothes of all kinds, dresses, jackets, skirts, suits, slacks, sportswear, men’s trousers, jackets, bedspreads, draperies, and upholstery.

Crepe
Fibre : Worsted cotton, wool, silk, man-made synthetics.
Weave : Mostly plain, but various weaves.
Characteristics : Has a crinkled, puckered surface or soft mossy finish. Comes in different weights and degrees of sheerness. Dull with a harch dry feel. Woolen crepes are softer than worsted. If it is fine, it drapes well. Has very good wearing qualities. Has a very slimming effect.
Uses : Depending on weight, it is used for dresses of all types, including long dinner dresses, suits, and coats.

Crettone
Fibre : Cotton, linen, rayon
Weave : Plain or twill.
Characteristics : Finished in widths from 30 to 50 inches. Quality and price vary a great deal. The warp counts are finer than the filling counts which are spun rather loose. Strong substantial and gives good wear. Printed cretonne often has very bright colours and patterns. The fabric has no lustre (when glazed, it is called chintz). Some are warp printed and if they are, they are usually completely reversible. Designs run from the conservative to very wild and often completely cover the surface.
Uses : Bedspreads, chairs, draperies, pillows, slipcovers, coverings of all kinds, beach wear, sportwear.

Denim
Fibre : Cotton
Weave : Twill – right hand – may be L2/1 or L3/1.
Characteristics : Name derived from French “serge de Nimes”. Originally had dark blue, brown or dark grey warp with a white or gray filling giving a mottled look and used only for work clothes. Now woven in bright and pastel colours with stripes as well as plain. Long wearing, it resists snags and tears, Comes in heavy and lighter weights.
Uses : Work clothes, overalls, caps, uniforms, bedspreads, slipcovers, draperies, upholstery, sportswear, of all kinds, dresses and has even been used for evening wear.

Dimity
Fibre : Cotton
Weave : Plain weave with a crosswise or lengthwise spaced rib or crossbar effect.
Characteristics : A thin sheer with corded spaced stripes that could be single, double or triple grouping. Made of combed yarn and is 36” wide. Has a crisp texture which remains fairly well after washing. Resembles lawn in the white state. It is easy to sew and manipulate and launders well. Creases unless creaseresistant. May be bleached, dyed, or printed and often printed with a small rosebud design. It is mercerized and has a soft lustre.
Uses : Children’s dresses, women’s dresses, and blouses, infant’s wear, collar and cuff sets, basinettes, bedspreads, curtains, underwear. Has a very young look.

Domett Flannel
Fibre : Cotton
Weave : Plain and twill
Characteristics : Also spelled domet. Generally made in white. Has a longer nap than on flannelette. Soft filling yarns of medium or light weight are used to obtain the nap. The term domett is interchangeable with “outing flannel” but it is only made in a plain weave. Both are soft and fleecy and won’t irritate the skin. Any sizing or starching must be removed before using. Outing flannel is also piece-dyed and some printed and produced in a spun rayon also.
Uses : Mostly used for infants wear, interlinings, polished cloths.

Pique
Fibre: Cotton, rayon, synthetics.
Weave: Lengthwise rib, English crosswise rib or cord weave.
Characteristics: Originally was a crosswise rib but now mostly a lenghtwise rib and the same as bedford cord. Ribs are often filled to give a more pronounced wale (cord weave). Comes in medium to heavy weights. It is generally made of combed face yarns and carded stuffer yarns. It is durable and launders well. Wrinkles badly unless given a wrinkle-free finish. Various prices. Also comes in different patterns besides wales. The small figured motifs are called cloque. Some of the patterns are birdseye (small diamond), waffle (small squares). honeycomb (like the design on honeycomb honey). When the fabric begins to wear out it wears at the corded areas first.
Uses : Trims, collars, cuffs, millinery, infants wear, particularly coats, and bonnets, women’s and children’s summer dresses, skirts and blouses, shirts, playclothes, and evening gowns.

Plisse
Fibre : Cotton, rayon, and others.
Weave : Plain
Characteristics : Could be made from any fine material, e.g. organdy, lawn, etc. Treated with caustic soda solution which shrinks parts of the goods either all
over or in stripes giving a blistered effect. Similar to seersucker in appearance. This crinkle may or may not be removed after washing. This depends on the quality of the fabric. It does not need to be ironed, but if a double thickness, such as a hem needs a little, it should be done after the fabric is thoroughly dry.
Uses : Sleepwear, housecoats, dresses, blouses for women and children, curtains, bedspreads, and bassinettes. Often it is called wrinkle crepe and may be made with a wax/shrink process (the waxed parts remain free of shrinkage and cause the ripples).

Point d’esprit
Fibre : Cotton – some in silk.
Weave : Leno, gauze, knotted, or mesh.
Characteristics : First made in France in 1834. Dull surfaced net with various sized holes. Has white or coloured dots individually spaced or in groups.
Uses : Curtains, bassinettes, evening gowns

Poplin
Fibre : Cotton, wool, and other textile fibres.
Weave : Crosswise rib. The filling is cylindrical. Two or three times as many warp as weft per inch.
Characteristics : Has a more pronounced filling effect than broadcloth. It is mercerized and has quite a high lustre. It may be bleached, or dyed (usually vat dyes are used) or printed. Heavy poplin is given a water-repellent finish for outdoor use. Originally made with silk warp and a heavier wool filling. Some also mildew-proof, fire-retardant, and some given a suede finish. American cotton broadcloth shirting is known as poplin in Great Britain.
Uses : Sportswear of all kinds, shirts, boy’s suits, uniforms, draperies, blouses, dresses.

Sailcloth
Fibre : Cotton, linen, nylon.
Weave : Plain, some made with a crosswise rib.
Characteristics : A strong canvas or duck. The weights vary, but most often the count is around 148×60. Able to withstand the elements (rain, wind and snow). Sailcloth for clothing is sold frequently and is much lighter weight than used for sails.
Uses : Sails, awnings, and all kinds of sportswear for men, women, and children.

Sateen
Fibre : Cotton, some also made in rayon.
Weave : Sateen, 5-harness, filling-face weave.
Characteristics : Lustrous and smooth with the sheen in a filling direction. Carded or combed yarns are used. Better qualities are mercerized to give a higher sheen. Some are only calendered to produce the sheen but this disappears with washing and is not considered genuine sateen. May be bleached, dyed, or printed. Difficult to make good bound buttonholes on it as it has a tendency to slip at the seams.
Uses : Dresses, sportswear, blouses, robes, pyjamas, linings for draperies, bedspreads, slip covers.

Seersucker
Fibre : Cotton, rayon, synthetics.
Weave : Plain, slack tension weave.
Characteristics : Term derived from the Persian “shirushaker”, a kind of cloth, literally “milk and sugar”. Crepe-stripe effect. Coloured stripes are often used. Dull surface. Comes in medium to heavy weights. the woven crinkle is produced by alternating slack and tight yarns in the warp. This is permanent. Some may be produced by pressing or chemicals, which is not likely to be permanent – called plisse. Durable, gives good service and wear. May be laundered without ironing. Can be bleached, yarn dyed, or printed. Some comes in a check effect.
Uses : Summer suits for men, women, and children, coats, uniforms, trims, nightwear, all kinds of sportswear, dresses, blouses, children’s wear of all kinds, curtains, bedspreads, slipcovers.

Shantung
Fibre : Cotton, silk, rayon, synthetics.
Weave : Plain.
Characteristics : It is a raw silk made from Tussah silk or silk waste, depending on the quality. It is quite similar to pongee, but has a more irregular surface, heavier, and rougher. Most of the slubs are in the filling direction. Wrinkles quite a bit. Underlining helps to prevent this as well as slipping at the seams. Do not fit too tightly, if long wear is expected. Comes in various weights, colours and also printed.
Uses : Dresses, suits, and coats.

Terry cloth
Fibre : Cotton and some linen.
Weave : Pile, also jacquard and dobby combined with pile.
Characteristics : Either all over loops on both sides of the fabric or patterned loops on both sides. Formed with an extra warp yarn. long wearing, easy to launder and requires no ironing. May be bleached, dyed, or printed. Better qualities have a close, firm, underweave, with very close loops. Very absorbent, and the longer the loop, the greater the absorbency. When the pile is only on one side, it is called “Turkish towelling.”
Uses : Towels, beachwear, bathrobes, all kinds of sportswear, children’s wear, slip covers, and draperies.

Tiking
Fibre : Cotton
Weave : Usually twill (L2/1 or L3/1), some jacquard, satin, and dobby.
Characteristics : Very tightly woven with more warp than filling yarns. Very sturdy and strong, smooth and lustrous. Usually has white and coloured stripes, but some patterned (floral). Can be made water-repellent, germ resistant, and feather-proof.
Uses : Pillow covers, mattress coverings, upholstering and some sportswear. `Bohemian ticking” has a plain weave, a very high texture, and is featherproof. Lighter weight than regular ticking. Patterned with narrow coloured striped on a white background or may have a chambray effect by using a white or unbleached warp with a blue or red filling.

Geotextile Fabric Types and Construction


Picturs of geotextiles

Image via Wikipedia

  • Materials.

Geotextiles are made from polypropylene, polyester, polyethylene, polyamide (nylon), polyvinylidene chloride, and fiberglass. Polypropylene and polyester are the most used. Sewing thread for geotextiles is made from KevlarL or any of the above polymers. The physical properties of these materials can be varied by the use of additives in the  composition and by changing the processing methods used to form the molten material into filaments. Yarns are formed from fibers which have been bundled and twisted together, a process also referred to as spinning. (This reference is different from the term spinning as used to denote the process of extruding filaments from a molten material.) Yarns may be composed of very long fibers (filaments) or relatively short pieces cut from filaments (staple fibers).

  • Geotextile Manufacture.

In woven construction, the warp yarns, which run parallel with the length of the geotextile panel (machine direction), are interlaced with yarns called fill or filling yarns, which run perpendicular to the length of the panel (cross direction as shown in fig 1-1). Woven construction produces geotextiles with high strengths and moduli in the warp and fill directions and low elongations at rupture. The modulus varies depending on the rate and the direction in which the geotextile is loaded. When woven geotextiles are pulled on a bias, the modulus decreases, although the ultimate breaking strength may increase. The construction can be varied imageso that the finished geotextile has equal or different strengths in the warp and fill directions.
Woven construction produces geotextiles with a simple pore structure and narrow range of pore sizes or openings between fibers. Woven geotextiles are commonly plain woven, but are sometimes made by twill weave or leno weave (a very open type of weave). Woven geotextiles can be composed of monofilaments (fig l-2) or multifilament yarns (fig 1-3). Multifilament woven construction produces the highest strength and modulus of all the constructions but are also the highest cost. A monofilament variant is the slit-film or ribbon filament woven geotextile (fig l-4). The fibers are thin and flat and made by cutting sheets of plastic into narrow strips. This type of woven geotextile is relatively inexpensive and is used for separation, i.e., the prevention of intermixing of two materials such as aggregate and fine-grained soil.

Nonwoven geotextiles are formed by a process other than weaving or knitting, and they are generally thicker than woven products. These geotextiles may be made either from continuous filaments or from staple fibers. The fibers are generally oriented randomly within the plane of the geotextile but can be given preferential orientation. In the spunbonding process, filaments are extruded, and laid directly on a moving belt to form the mat, which is then bonded by one of the processes described below.

(a) Needle punching. Bonding by needle punching involves pushing many barbed needles through one or several layers of a fiber mat normal to the plane of the geotextile. The process causes the fibers to be mechanically entangled (fig l-5). The resulting geotextile has the appearance of a felt mat.

(b) Heat bonding. This is done by incorpo-rating fibers of the same polymer type but having different melting points in the mat, or by using hetero filaments, that is, fibers composed of one type of polymer on the inside and covered or sheathed with a polymer having a lower melting point. A heat-bonded geotextile is shown in figure l-6.

(c) Resin bonding. Resin is introduced into  the fiber mat, coating the fibers and bonding the contacts between fibers.

(d) Combination bonding. Sometimes a combination of bonding techniques is used to facilitate manufacturing or obtain desired properties.

Composite geotextiles are materials which combine two or more of the fabrication techniques. The most common composite geotextile is a nonwoven mat that has been bonded by needle punching to one or both sides of a woven scrim.

imageimage

imageimage

  • Geotextile Durability

Exposure to sunlight degrades the physical properties of polymers. The rate of degradation is reduced by the addition of carbon black but not eliminated. Hot asphalt can approach the melting point of some polymers. Polymer materials become brittle in very cold temperatures. Chemicals in the groundwater can react with polymers. All polymers gain water with time if water is present. High pH water can be harsh on polyesters while low pH water can be harsh on polyamides. Where chemically unusual environment exists, laboratory test data on effects of exposure of the geotextile to this environment should be sought. Experience with geotextiles in place spans only about 30 years. All of these factors should be considered in selecting or specifying acceptable geotextile materials. Where long duration integrity of the material is critical to life safety and where the in-place material cannot easily be periodically inspected or easily replaced if it should become degraded (for example filtration and/or drainage functions within an earth dam), current practice is to use only geologic materials (which are orders of magnitude more resistant to these weathering effects than polyesters).

  • Seam Strength

a. Joining Panels. Geotextile sections can be joined by sewing, stapling, heat welding, tying, and gluing. Simple overlapping and staking or nailing to the underlying soil may be all that is necessary where the primary purpose is to hold the material in place during installation. However, where two sections are joined and must withstand tensile stress or where the security of the connection is of prime importance, sewing is the most reliable joining method.

b. Sewn Seams. More secure seams can be produced in a manufacturing plant than in the field. The types of sewn seams which can be produced in the field by portable sewing machines are presented in figure 1-7. The seam type designations are from Federal Standard 751. The SSa seam is referred to as a “prayer” seam, the SSn seam as a “J” seam, and the SSd as a “butterfly” seam. The double-sewn seam, SSa-2, is the preferred method for salvageable geotextiles. However, where the edges of the geotextile are subject to unravelling, SSd or SSn seams are preferred.

image

c. Stitch Type. The portable sewing machines used for field sewing of geotextiles were designed as bag closing machines. These machines can produce either the single-thread or two-thread chain stitches as shown in figure l-8. Both of these stitches are subject to unravelling, but the single-thread stitch is much more susceptible and  must be tied at the end of each stitching. Two rows of stitches are preferred for field seaming,  two rows of stitches are absolutely essential for secure seams when using the type 101 stitch.  since, with this stitch, skipped stitches lead to complete unravelling of the seam. Field sewing should be conducted so all stitching is exposed forinspection. Any skipped stitches should be over sewn.

d. Sewing Thread. The composition of the thread should meet the same compositional performance requirements as the geotextile itself, although it may be desirable to permit the thread to be made of a material different from the geotextile and being sewn. Sewing thread for geotextiles is usually made from Kevlar, polyester, polypropylene, or nylon with the first two recommended despite their greater expense. Where strong seams are required, Kevlar sewing thread provides very high-strength with relative ease of sewing.

  • Geotextile Functions and Applications

a. Functions. Geotextiles perform one or more basic functions: filtration, drainage, separation, erosion control, sediment control, reinforcement, and (when impregnated with sphalt) moisture barrier. In any one application, a geotextile may be performing several of these functions.

b. Filtration. The use of geotextiles in filter applications is probably the oldest, the most widely known, and the most used function of geotextiles. In this application, the geotextile is placed in contact with and down gradient of soil to be drained. The plane of the geotextile is normal to the expected direction of water flow. The capacity for flow of water normal to the plane of the geotextile is referred to as permittivity. Water and any particles suspended in the water which are smaller than a given size flow through the geotextile. Those soil particles larger than that size are stopped and prevented from being carried away. The geotextile openings should be sized to prevent soil particle movement. The geotextiles substitute for and serve the same function as the traditional granular filter. Both the granular filter and the geotextile filter must allow water (or gas) to pass without significant buildup of hydrostatic pressure. A geotextile-lined drainage trench along the edge of a road pavement is an example using a geotextile as a filter. Most geotextiles are capable of performing this function. Slit film geotextiles are not preferred because opening sizes are unpredictable. Long term clogging is a concern when geotextiles are used for filtration.

c. Drainage. When functioning as a drain, a geotextile acts as a conduit for the movement of liquids or gases in the plane of the geotextile. Examples are geotextiles used as wick drains and blanket drains. The relatively thick nonwoven geotextiles are the products most commonly used. Selection should be based on transmissivity, which is the capacity for in-plane flow. Questions exist as to long term clogging potential of geotextile drains. They are known to be effective in short duration applications.

d. Erosion Control. In erosion control, the geotextile protects soil surfaces from the tractive forces of moving water or wind and rainfall erosion. Geotextiles can be used in ditch linings to protect erodible fine sands or cohesionless silts. The geotextile is placed in the ditch and is secured in place by stakes or is covered with rock or gravel to secure the geotextile, shield it from ultraviolet light, and dissipate the energy of the flowing water. Geotextiles are also used for temporary protection against erosion on newly seeded slopes. After the slope has been seeded, the geotextile is anchored to the slope holding the soil and seed in-place until the seeds germinate and vegetative cover is established. The erosion control function can be thought of as a special case of the combination of the filtration and separation functions.

e. Sediment Control. A geotextile serves to control sediment when it stops particles suspended in surface fluid flow while allowing the fluid to pass through. After some period of time, particles accumulate against the geotextile, reducing the flow of fluid and increasing the pressure against the geotextile. Examples of this application are silt fences placed to reduce the amount of sediment carried off construction sites and into nearby water courses. The sediment control function is actually a filtration function.

f. Reinforcement. In the most common reinforcement application, the geotextile interacts with soil through frictional or adhesion forces to resist tensile or shear forces. To provide reinforcement, a geotextile must have sufficient strength and embedment length to resist the tensile forces generated, and the strength must be developed at sufficiently small strains (i.e. high modulus) to prevent excessive movement of the reinforced structure. To reinforce embankments and retaining structures, a woven geotextile is recommended
because it can provide high strength at small strains.

g. Separation. Separation is the process of preventing two dissimilar materials from mixing. In this function, a geotextile is most often required to prevent the undesirable mixing of fill and natural soils or two different types of fills. A geotextile can be placed between a railroad subgrade and track ballast to prevent contamination and resulting strength loss of the ballast by intrusion of the subgrade soil. In construction of roads over soft soil, a geotextile can be placed over the soft subgrade, and then gravel or crushed stone placed on the geotextile. The geotextile prevents mixing of the two materials.

h. Moisture Barrier. Both woven and nonwoven geotextiles can serve as moisture barriers when impregnated with bituminous, rubber-bitumen, or polymeric mixtures. Such  impregnation reduces both the cross-plane and in-plane flow capacity of the geotextiles to a minimum. This function plays an important role in the use of geotextiles in paving overlay systems. In such systems, the impregnated material seals the existing pavement and reduces the amount of surface water entering the base and subgrade. This prevents a reduction in strength of these components and improves the performance of the pavement system.

image

Ref.:-

ENGINEERING USE OF GEOTEXTILES

-UNIFIED FACILITIES CRITERIA (UFC)

UFC 3-220-08FA
16 January 2004

STANDARD COTTON FABRICS


  • Armure

Fibre : Cotton, silk, wool, rayon, synthetics, and blends.
Weave : Plain, twill, or rib, background often has a small design either jacquard or dobby made with warp floats on surface giving a raised effect.
Characteristics : Design is often in two colours and raised. The name was derived from original fabric which was woven with a small interlaced design of chain armor and used for military equipment during the Crusades.
Uses : a rich looking dress fabric, draperies, or upholstery.

  • Batiste

Fibre : Cotton, also rayon and wool.
Weave : Plain
Characteristics : Named after Jean Baptiste, a French linen weaver. Light weight, soft, semi-sheer fabric which resembles nainsook, but finer. It belongs to the lawn family; almost transparent. It is made of tightly twisted, combed yarns and mercerized finish. Sometimes it is printed or embroidered. In a heavier weight, it is used for foundation garments and linings in a plain, figured, striped, or flowered design. Considered similar to nainsook but finer and lighter in weight. Now usually made of 100% polyester distinguished by slubs in filling direction.

  • Birdseye

Fibre : In cotton and Linen or blend of rayon staple and cotton.
Weave : Usually dobby
Characteristics : Very soft, light weight, and absorbent. Woven with a loosely twisted filling to increase absorbency. Launders very well. No starch is applied because the absorption properties must be of the best. Material must be free from any foreign matter. It is also called “diaper cloth” and is used for that purpose as well as very good towelling. Also “novelty” birdseye effects used as summer dress fabrics.

  • Broadcloth

Fibre : Cotton and silk, and rayon. Very different than wool broadcloth.
Weave : Plain weave and in most cotton broadcloths made with a very fine crosswise rib weave.
Characteristics : Originally indicated a cloth woven on a wide loom. Very closely woven and in cotton, made from either carded or combed yarns. The filling is heavier and has less twist. It is finer than poplin when made with a crosswise rib and it is lustrous and soft with a good texture. Thread count ranges from high quality 144 x 6 count down to 80 x 60. Has a smooth finish. May be bleached, dyed, or printed; also is often mercerized. Wears very well. If not of a high quality or treated it wrinkles very badly. Finest quality made from Egyptain or combed pima cotton – also sea island.
Uses : Shirts, dresses, particularly the tailored type in plain colours, blouses, summer wear of all kinds.

  • Brocade

Fibre : Cotton brocade often has the ground of cotton and the pattern of rayon and silk. Pattern is in low relief.
Weave : Jacquard and dobby
Characteristics : Rich, heavy, elaborate design effect. Sometimes with coloured or metallic threads making the design usually against a satin weave background. This makes the figures stand out. The figures in brocade are rather loose, while in damask the figure threads are actually bound into the material. The pattern may be satin on a twill ground or twill on a satin ground. Often reversible. The motifs may be of flowers, foliage, Scrollwork, Pastoral scenes, or other designs. The price range is wide. Generally reputed to have been developed from the latin name “brocade” which means to figure.
Uses : All types of after 5 wear, church vestments, interior furnishings, and state robes.

  • Buckram

Fibre : Cotton, some in linen, synthetics.
Weave : Plain
Characteristics : Cheap, low-textured, loose weave, very heavily sized and stiff. Also, 2 fabrics are glued together; one is open weave and the other much finer. Some is also made in linen in a single fabric. Also called crinoline book muslin or book binding. Name from Bokhara in Southern Russia, where it was first made.
Uses : Used for interlinings and all kinds of stiffening in clothes, book binding, and for millinery (because it can be moistened and shaped). Used to give stiffness to leather garments not as stiff and often coloured is called “tarlatan”. Softens with heat. Can be shaped while warm.

  • Calico

Fibre : Cotton
Weave : Plain – usually a low count.
Characteristics : Originated in Calcutta, India, and is one of the oldest cottons. Rather coarse and light in weight. Pattern is printed on one side by discharge or resist printing. It is not always fast in colours. Sized for crispness but washes out and requires starch each time. Designs are often geometric in shape, but originally elaborate designs of birds, trees, and flowers. Inexpensive. Similar to percale. Very little on the market today, but the designs are still in use on other fabrics and sold as “calico print.”
Uses : Housedresses, aprons, patchwork quilts.

  • Cambric

Fibre : Cotton, also linen.
Weave : Plain
Characteristics : Soft, closely woven, light. Either bleached or piece dyed. Highly mercerized, lint free. Calendered on the right side with a slight gloss. Lower qualities have a smooth bright finish. Similar to batiste but is stiffer and fewer slubs. Launders very well. Has good body, sews and finishes well. Originally made in Cambria, France of linen and used for Church embroidery and table linens.
Uses : Handkerchiefs, underwear, slips, nightgowns, children’s dresses, aprons, shirts and blouses.

 

Fibre : Cotton – also wool.
Weave : Plain
Characteristics : An unbleached muslin bed sheeting (also called Kraft muslin) used as a base fabric on which a chenille effect is formed by application of candlewick (heavy plied yarn) loops, which are then cut to give the fuzzy effect and cut yarn appearance of true chenille yarn. May be uncut also. (True chenille is a cotton, wool, silk, or rayon yarn which has a pile protruding all around at slight angles and stimulates a caterpillar. Chenille is the French word for caterpillar.)
Uses : Bedspreads, drapes, housecoats, beach wear.

 

  • Canton Flannel

Fibre : Cotton
Weave : Four harness warp-faced twill weave.
Characteristics : The filling yarn is a very loosely twisted and soft and later brushed to produced a soft nap on the back, the warp is medium in size. The face is a twill. Heavy, warm, strong and absorbent. Named for Canton, China where it was first made. Comes bleached, unbleached, dyed, and some is printed.
Uses : Interlinings, sleeping garments, linings, coverings, work gloves.

 

  • Canvas

see Duck
Chambray
Fibre : Cotton
Weave : Plain weave or dobby designs on a plain-weave ground.
Characteristics : Made with a dyed warp and a white or unbleached filling. Both carded and combed yarns used. Has a white selvedge. Some woven with alternating white and coloured warp. “Faded” look. Has very soft colouring. Some made with stripes, checks or embroidered. Smooth, strong, closely woven, soft and has a slight lustre. Wears very well, easy to sew, and launders well. If not crease resistant, it wrinkles easily. Originated in Cobrai, France it was first made for sunbonnets.
Uses : Children’s wear, dresses, shirts and blouses, aprons, all kinds of sportswear.

Fibre : Cotton
Weave : Plain
Characteristics : Fabric is napped, sheared, and dyed to simulate chamois leather. It is stiffer than kasha and thicker, softer and more durable than flannelette. Must be designated as “cotton chamoise-colour cloth”.
Uses : Dusters, interlining, storage bags for articles to prevent scratching.

  • Chamoisette

Fibre : Cotton, also rayon and nylon.
Weave : Knitted, double knit construction.
Characteristics : A fine, firmly knit fabric. Has a vary short soft nap. Wears well. Nylon chamoisette is more often called “glove silk”.
Uses : Gloves.

 

  • Cheesecloth

Fibre : Cotton
Weave : Plain
Characteristics : Originally used as a wrapping material for pressing cheese. Loosely woven, thin, light in weight, open in construction, and soft. Carded yarns are always used. It is also called gauze weave. When woven in 36″ widths it is called tobacco cloth, When an applied finish is added, it is called buckram, crinoline, or bunting.
Uses : In the grey cloth, it is used for covering tobacco plants, tea bags and wiping cloths.
Finished cloth is used for curtains, bandages, dust cloths, cheap bunting, hat lining, surgical gauze, fly nets, food wrapping, e.g. meat and cheese, costumes and basket tops.

 

  • Chenille Fabric

Fibre : Cotton and any of the main textile fibres.
Weave : Mostly plain weave.
Characteristics : Warp yarn of any major textile fibre. Filling of chenille yarns (Has a pile protruding all around at right angles). The word is French for caterpillar and fabric looks hairy. Do not confuse with tufted effects obtained without the use of true Chenille filling.
Uses : Millinery, rugs, decorative fabrics, trimmings, upholstery.

 

  • Chinchilla

Fibre : Cotton or wool, and some manmade and synthetics.
Weave : Sateen or twill construction with extra fillings for long floats.
Characteristics : Does not resemble true chinchillas fur. Has small nubs on the surface of the fabric which are made by the chincilla machine. It attacks the face and causes the long floats to be worked into nubs and balls. Cotton warp is often used because it cannot show from either side. Made in medium and heavy weights. Very warm and cozy fabrics. Takes its name from Chinchilla Spain where it was invented.
Uses : In cotton, used for baby’s blankets and bunting bags.

 

  • Chino

Fibre : Cotton
Weave : Twill (left hand)
Characteristics : Combined two-ply warp and filling. Has a sheen that remains. Fabric was purchased in China (thus the name) by the U.S. Army for uniforms. Originally used for army cloth in England many years before and dyed olive-drab. Fabric is mercerized and sanforized. Washs and wears extremely well with a minimum of care.
Uses : Army uniforms, summer suits and dresses, sportswear.

 

  • Chintz

Fibre : Cotton
Weave : Plain
Characteristics : Has bright gay figures, large flower designs, birds and other designs. Also comes in plain colours. Several types of glaze. The wax and starch glaze produced by friction or glazing calendars will wash out. The resin glaze finish will not wash out and withstand drycleaning. Also comes semi-glazed. Unglazed chintz is called cretonne. Named from the Indian word “Chint” meaning ” broad, gaudily printed fabric”.
Uses : Draperies, slipcovers, dresses, sportwear.

  • Corduroy

Fibre : Cotton, rayon, and other textile fibres.
Weave : Filling Pile with both plain and twill back.
Characteristics : Made with an extra filling yarn. In the velvet family of fabrics. Has narrow medium and wide wales, also thick n’thin or checkerboard patterns. Wales have different widths and depths. Has to be cut all one way with pile running up. Most of it is washable and wears very well. Has a soft lustre.
Uses : Children’s clothes of all kinds, dresses, jackets, skirts, suits, slacks, sportswear, men’s trousers, jackets, bedspreads, draperies, and upholstery.

 

  • Crepe

Fibre : Worsted cotton, wool, silk, man-made synthetics.
Weave : Mostly plain, but various weaves.
Characteristics : Has a crinkled, puckered surface or soft mossy finish. Comes in different weights and degrees of sheerness. Dull with a harch dry feel. Woolen crepes are softer than worsted. If it is fine, it drapes well. Has very good wearing qualities. Has a very slimming effect.
Uses : Depending on weight, it is used for dresses of all types, including long dinner dresses, suits, and coats.

 

  • Crettone

Fibre : Cotton, linen, rayon
Weave : Plain or twill.
Characteristics : Finished in widths from 30 to 50 inches. Quality and price vary a great deal. The warp counts are finer than the filling counts which are spun rather loose. Strong substantial and gives good wear. Printed cretonne often has very bright colours and patterns. The fabric has no lustre (when glazed, it is called chintz). Some are warp printed and if they are, they are usually completely reversible. Designs run from the conservative to very wild and often completely cover the surface.
Uses : Bedspreads, chairs, draperies, pillows, slipcovers, coverings of all kinds, beach wear, sportwear.

 

  • Denim

Fibre : Cotton
Weave : Twill – right hand – may be L2/1 or L3/1.
Characteristics : Name derived from French “serge de Nimes”. Originally had dark blue, brown or dark grey warp with a white or gray filling giving a mottled look and used only for work clothes. Now woven in bright and pastel colours with stripes as well as plain. Long wearing, it resists snags and tears, Comes in heavy and lighter weights.
Uses : Work clothes, overalls, caps, uniforms, bedspreads, slipcovers, draperies, upholstery, sportswear, of all kinds, dresses and has even been used for evening wear.

 

  • Dimity

Fibre : Cotton
Weave : Plain weave with a crosswise or lengthwise spaced rib or crossbar effect.
Characteristics : A thin sheer with corded spaced stripes that could be single, double or triple grouping. Made of combed yarn and is 36” wide. Has a crisp texture which remains fairly well after washing. Resembles lawn in the white state. It is easy to sew and manipulate and launders well. Creases unless creaseresistant. May be bleached, dyed, or printed and often printed with a small rosebud design. It is mercerized and has a soft lustre.
Uses : Children’s dresses, women’s dresses, and blouses, infant’s wear, collar and cuff sets, basinettes, bedspreads, curtains, underwear. Has a very young look.

 

  • Domett Flannel

Fibre : Cotton
Weave : Plain and twill
Characteristics : Also spelled domet. Generally made in white. Has a longer nap than on flannelette. Soft filling yarns of medium or light weight are used to obtain the nap. The term domett is interchangeable with “outing flannel” but it is only made in a plain weave. Both are soft and fleecy and won’t irritate the skin. Any sizing or starching must be removed before using. Outing flannel is also piece-dyed and some printed and produced in a spun rayon also.
Uses : Mostly used for infants wear, interlinings, polished cloths.

 

  • Pique

Fibre: Cotton, rayon, synthetics.
Weave: Lengthwise rib, English crosswise rib or cord weave.
Characteristics: Originally was a crosswise rib but now mostly a lenghtwise rib and the same as bedford cord. Ribs are often filled to give a more pronounced wale (cord weave). Comes in medium to heavy weights. It is generally made of combed face yarns and carded stuffer yarns. It is durable and launders well. Wrinkles badly unless given a wrinkle-free finish. Various prices. Also comes in different patterns besides wales. The small figured motifs are called cloque. Some of the patterns are birdseye (small diamond), waffle (small squares). honeycomb (like the design on honeycomb honey). When the fabric begins to wear out it wears at the corded areas first.
Uses : Trims, collars, cuffs, millinery, infants wear, particularly coats, and bonnets, women’s and children’s summer dresses, skirts and blouses, shirts, playclothes, and evening gowns.

  • Plisse

Fibre : Cotton, rayon, and others.
Weave : Plain
Characteristics : Could be made from any fine material, e.g. organdy, lawn, etc. Treated with caustic soda solution which shrinks parts of the goods either all
over or in stripes giving a blistered effect. Similar to seersucker in appearance. This crinkle may or may not be removed after washing. This depends on the quality of the fabric. It does not need to be ironed, but if a double thickness, such as a hem needs a little, it should be done after the fabric is thoroughly dry.
Uses : Sleepwear, housecoats, dresses, blouses for women and children, curtains, bedspreads, and bassinettes. Often it is called wrinkle crepe and may be made with a wax/shrink process (the waxed parts remain free of shrinkage and cause the ripples).

 

  • Point d’esprit

Fibre : Cotton – some in silk.
Weave : Leno, gauze, knotted, or mesh.
Characteristics : First made in France in 1834. Dull surfaced net with various sized holes. Has white or coloured dots individually spaced or in groups.
Uses : Curtains, bassinettes, evening gowns

 

  • Poplin

Fibre : Cotton, wool, and other textile fibres.
Weave : Crosswise rib. The filling is cylindrical. Two or three times as many warp as weft per inch.
Characteristics : Has a more pronounced filling effect than broadcloth. It is mercerized and has quite a high lustre. It may be bleached, or dyed (usually vat dyes are used) or printed. Heavy poplin is given a water-repellent finish for outdoor use. Originally made with silk warp and a heavier wool filling. Some also mildew-proof, fire-retardant, and some given a suede finish. American cotton broadcloth shirting is known as poplin in Great Britain.
Uses : Sportswear of all kinds, shirts, boy’s suits, uniforms, draperies, blouses, dresses.

 

  • Sailcloth

Fibre : Cotton, linen, nylon.
Weave : Plain, some made with a crosswise rib.
Characteristics : A strong canvas or duck. The weights vary, but most often the count is around 148×60. Able to withstand the elements (rain, wind and snow). Sailcloth for clothing is sold frequently and is much lighter weight than used for sails.
Uses : Sails, awnings, and all kinds of sportswear for men, women, and children.

 

  • Sateen

Fibre : Cotton, some also made in rayon.
Weave : Sateen, 5-harness, filling-face weave.
Characteristics : Lustrous and smooth with the sheen in a filling direction. Carded or combed yarns are used. Better qualities are mercerized to give a higher sheen. Some are only calendered to produce the sheen but this disappears with washing and is not considered genuine sateen. May be bleached, dyed, or printed. Difficult to make good bound buttonholes on it as it has a tendency to slip at the seams.
Uses : Dresses, sportswear, blouses, robes, pyjamas, linings for draperies, bedspreads, slip covers.

 

  • Seersucker

Fibre : Cotton, rayon, synthetics.
Weave : Plain, slack tension weave.
Characteristics : Term derived from the Persian “shirushaker”, a kind of cloth, literally “milk and sugar”. Crepe-stripe effect. Coloured stripes are often used. Dull surface. Comes in medium to heavy weights. the woven crinkle is produced by alternating slack and tight yarns in the warp. This is permanent. Some may be produced by pressing or chemicals, which is not likely to be permanent – called plisse. Durable, gives good service and wear. May be laundered without ironing. Can be bleached, yarn dyed, or printed. Some comes in a check effect.
Uses : Summer suits for men, women, and children, coats, uniforms, trims, nightwear, all kinds of sportswear, dresses, blouses, children’s wear of all kinds, curtains, bedspreads, slipcovers.

  • Shantung

Fibre : Cotton, silk, rayon, synthetics.
Weave : Plain.
Characteristics : It is a raw silk made from Tussah silk or silk waste, depending on the quality. It is quite similar to pongee, but has a more irregular surface, heavier, and rougher. Most of the slubs are in the filling direction. Wrinkles quite a bit. Underlining helps to prevent this as well as slipping at the seams. Do not fit too tightly, if long wear is expected. Comes in various weights, colours and also printed.
Uses : Dresses, suits, and coats.

 

  • Terry cloth

Fibre : Cotton and some linen.
Weave : Pile, also jacquard and dobby combined with pile.
Characteristics : Either all over loops on both sides of the fabric or patterned loops on both sides. Formed with an extra warp yarn. long wearing, easy to launder and requires no ironing. May be bleached, dyed, or printed. Better qualities have a close, firm, underweave, with very close loops. Very absorbent, and the longer the loop, the greater the absorbency. When the pile is only on one side, it is called “Turkish towelling.”
Uses : Towels, beachwear, bathrobes, all kinds of sportswear, children’s wear, slip covers, and draperies.

 

  • Tiking

Fibre : Cotton
Weave : Usually twill (L2/1 or L3/1), some jacquard, satin, and dobby.
Characteristics : Very tightly woven with more warp than filling yarns. Very sturdy and strong, smooth and lustrous. Usually has white and coloured stripes, but some patterned (floral). Can be made water-repellent, germ resistant, and feather-proof.
Uses : Pillow covers, mattress coverings, upholstering and some sportswear. `Bohemian ticking” has a plain weave, a very high texture, and is featherproof. Lighter weight than regular ticking. Patterned with narrow coloured striped on a white background or may have a chambray effect by using a white or unbleached warp with a blue or red filling.

Digg This

Bedford-cord


PLAIN FACE BEDFORDCORD

Bedford cord is the class of weaves produces the longitudinal warp lines in the cloth with fine sunken lines between.

The Bedford cord named after the town of Bedford in England. It is a heavy fabric with a length wise ribbed weave that reassembled corduroy.

METHOD OF CONSTRUCTION

· At interval pair of ends work in perfectly plain order with the picks, therefore these lifts are first indicated

clip_image002

· The number of ends between the pair of plain end being varied according to the width of cord required.

· The next stage is consist of inserting marks (which indicating warp float) on the first and second picks of alternate cords and on the third and fourth picks of the other cords.

clip_image004

· The object of arranging the marks of the cord ends in alternate order is chiefly to equalize the lift of the ends.

· The designs are completed by inserting plain weave on the cord ends, which join with the plain working of the pair of ends.

clip_image006

STRUCTURE DETAIL

· The cord ends float over three picks and under one while the picks float in pairs on the back of one cord and interweave in plain order in the next cord.

 

DRAFTING AND DENTING

· The usual order of drafting is shown here

· The plain ends are being drawn on the healds of front and accordingly the lifting plan is maid.

clip_image008

· In order to fully develop the sunken lines the plain should be separated by the slits of the reed

clip_image010

· In some cases however the plain ends are dented accordingly to the type of fineness required.

clip_image012

· Sometimes the plain ends are woven two per slit and cord ends are three or four per slit. The number of ends in the width of a cord has some influence upon the order of denting.

WADDED BEDFORD CORD

This structure contain thick wadding or padding ends which lie between the rib face cloth and the weft floats on the undersides the arrangement to give grater prominence to the cord.

METHOD TO INTRODUCE WADDING ENDS

· First we decide the place at which the wadding ends are introduced

clip_image014

· The wadding ends are raised where the picks floats at the back shown in design and are left down where the picks interweave in plain order.

clip_image016

· In order of interlacement of the picks and position of warps is shown here

DRAFTING AND DENTING

· Here the drawing (drafting) is done in same maner as before only after plain order healdshafts. The wadding ends are drawn and then the cord ends.

clip_image018

· Here while denting is done, like 2 ends per slit the wadding ends being dented extra

clip_image020

· The number of wadding ends to each cord may be varied according to requirement.

OTHER:

· The design may be arranged with an odd number of each (not including the wadding ends) to each cord but it is then necessary to reserve the marks of an alternate pairs of the plain ends in order that the plain weave will join correctly.

clip_image021 clip_image023

SUITABLE WEAVING CONDITION

· Face warp= 30’s Cotton, 108 Ends per inch

· Wadding warp= 2/20’s cotton

· Weft = 36’s cotton, 84 picks per inch

TWILL FACED BEDFORD CORD

· It is an another modification of Bedford cord structure consist of the using warp twill instead of plain weave for the picks which inter weave on the face of the cord stripes.

· Thus the warp being brought more prominently on surface.

· The construction is same like a plain face but the introduction of twill weave in place of plain is take place.

clip_image025

 

WHY CORDS ARE FORMED?

· The structure is formed due to the occurrence of force variations in structure.

· The plain order is highly compact structure here end 6-7 will force the yarn downward due to the plain order.

· And the other region contain plain or twill order with the warp floats which will not force but allow the other ends to move up.

· And this variation of force form the force forms the cord.

 

 

BEDFORD CORD ARRANGED WITH ALTERNATE PICKS

· Bedford cord are also made with alternate picks floating at the back, in which case the pairs of plain ends require to be indicated in the reverse order.

· Here we take an example of 10 end wide cord first the marks of the pairs of plain ends are indicated

clip_image027

· Then the marks which cut with plain marks are inserted on the alternate horizontal spaces.

clip_image029

· Afterwards plain weave is inserted on the blank horizontal spaces of the cords as indicated

clip_image031

· But in this case plain does not join perfectly with the plain marks of the pair of ends

· Wadding ends also may introduce according to the requirement, this wadding ends are shown raised over the picks which floats at the back.

clip_image033

APPLICATION:

· Fabric produced with these weave may be made in medium weight cotton or spun rayon fabrics for Dress wear, Sports-wear and ornamental trimming.

· In heavier qualities, It is suitable for Soft furnishing when produced with cotton yarns or for Suiting when made up of worsted yarns.

· Also used for shirting, coating, upholstery, uniforms etc.

Digg This

Basic Motions (Mechanisms) of Weaving


1.1 Introduction

The process of producing a fabric by interlacing warp and weft threads is known as weaving. The machine used for weaving is known as weaving machine or loom. Weaving is an art that has been practiced for thousands of years. The earliest application of weaving dates back to the Egyptian civilization. Over the years, both the process as well as the machine have undergone phenomenal changes. As of today, there is a wide range of looms being used, right from the simplest handloom to the most sophisticated loom. In this rang, the most widely prevalent loom, especially with reference to India, is the ubiquitous “plain power loom”. In this and in the chapters that follow, the various mechanisms associated with the plain power loom are discussed in elaborate detail.

1.2 Basic Mechanisms in a Plain Power Loom

In order to interlace wrap and weft threads to produce a fabric, the following mechanisms are necessary on any type of loom: 1. Primary mechanisms 2. Secondary mechanisms 3. Auxillary mechanisms

1.2.1 Primary Mechanisms These are fundamental or essential mechanisms. Without these mechanisms, it is practically impossible to produce a fabric. It is for this reason that these mechanisms are called ‘primary’ mechanisms. The primary mechanisms are three in number. a. Shedding mechanism b. Picking mechanism c. Beat-up mechanism

Primary Motions

a. Shedding mechanism

The shedding mechanism separates the warp threads into two layers or divisions to form a tunnel known as ‘shed’

b. Picking mechanism

The picking mechanism passes weft thread from one selvedge of the fabric to the other through the shed by means of a shuttle, a projectile, a rapier, a needle, an air-jet or a water-jet. The inserted weft thread is known as “pick”.

c. Beat-up mechanism

The beat-up mechanism beats or pushes the newly inserted length of weft thread (pick) into the already woven fabric at a point known as “fell of the cloth”. These three mechanisms namely shedding, picking and then beat-up are done in sequence.

1.2.2 Secondary Mechanisms

These mechanisms are next in importance to the primary mechanisms. If weaving is to be continuous, these mechanisms are essential. So they are called the ‘secondary’ mechanisms. They are: a. Take-up motion b. Let-off motion

a. Take-up motion

The take-up motion withdraws the cloth from the weaving area at a constant rate so as to give the required pick-spacing (in picks/inch or picks/cm) and then winds it on to a cloth roller.

b. Let-off motion.

The let-off motion delivers the warp to the weaving area at the required rate and at constant tension by unwinding it from the weaver’s beam. The secondary motions are carried out simultaneously.

1.2.3 Auxillary Mechanisms

To get high productivity and good quality of fabric, additional mechanisms, called auxillary mechanisms, are added to a plain power loom. The auxillary mechanisms are useful but not absolutely essential. This is why they are called the ‘auxillary’ mechanisms. These are listed below. a. Warp protector mechanism b. Weft stop motion c. Temples d. Brake e. Warp stop motion (Predominantly found in automatic looms)

a. Warp protector mechanism

The warp protector mechanism will stop the loom if the shuttle gets trapped between the top and bottom layers of the shed. It thus prevents excessive damage to the warp threads, reed wires and shuttle.

b. Weft stop motion

The object of the weft stop motion is to stop the loom when a weft thread breaks or gets exhausted. This motion helps to avoid cracks in a fabric.

c. Temples

The function of the temples is to grip the cloth and hold it at the same width as the warp in the reed, before it is taken up.

d. Brake

The brake stops the loom immediately whenever required. The weaver uses it to stop the loom to repair broken ends and picks.

e. Warp stop motion

The object of the warp stop motion is to stop the loom immediately when a warp thread breaks during the weaving process.

Digg This