Ginning


Once Valledupar's main economic produce; Cotton

Image via Wikipedia

Gin equipment is designed to remove foreign matter, moisture, and cottonseed from raw seed cotton. Two types of gins are in common use—the saw gin and the roller gin. Saw gins are normally used for Upland cottons, whereas roller gins are used for the ELS (Pima) cottons. In a saw gin, the cotton enters the saw gin stand through a huller front and the saws grasp the seed cotton and draw it through widely spaced ribs. The ginning action is caused by a set of saws rotating  between a second set of narrowly spaced ginning ribs. The saw teeth pass between the ribs pulling the fiber through at the ginning point. The space is too narrow for the seed to pass and so the fiber is pulled from the seed. A roller gin consists of a ginning roll (covered with a compound cotton and rubber material), a stationary knife held against the roll, and a rotary knife. The rotating roll pulls the fiber under the stationary knife. The seeds cannot pass under the stationary knife and is separated from the fiber. The rotary knife then pushes the ginned seed away from the ginning point allowing room for more seed cotton to be ginned.

image

Fig. 1. A modern gin stand that separates fiber from cottonseed.

Typical types of gin equipment are cylinder cleaners, stick machines, and lint cleaners for cleaning; hot air driers for removing moisture; gin stands for separating the fiber from the cottonseed; and the bale press for packaging the lint . The gin stand (Fig. 1) is actually the only item of equipment required to gin cotton, the other equipment is for trash removal and drying. About 636 kg of seed cotton is required to produce a bale (∼227 kg; 500 lb) of lint cotton from spindle-harvested cotton. The remainder consists of about 354-kg seed and 55-kg trash and moisture. Typical gins contain one to four individual gin stands, each rated at 6–15 bales/h. However, a few gins contain as many as eight gin stands and produce up to 100 bales/h. The greatest number [30,498] of gins existed in the United States in 1902. The majority were on plantations, and they processed 10.6 million bales (2.3 × 109 kg) of cotton (43). Since then the number of gins has declined, and the average number of bales processed per gin has increased. In 2000, a total of ∼1018 active gins handled a crop of 16,742,000 bales (∼3.65 × 109 kg) for an average of 16,446 bales (3.58 × 106 kg) per gin plant. The number of bales produced in the United States varies substantially from year to year, which places a severe financial burden on the ginning industry.

Mechanical harvesting systems were made possible by the invention of saw type lint-cleaning systems in the early 1950s. Lint cleaners enabled gins to remove from the cotton the additional trash that resulted from mechanical harvesting. The mechanical systems reduced the harvesting period from 4–5 months to ∼6–8 weeks of intensive operation. Severe congestion problems at the gin were eased with the storage of seed cotton in 8- to 15-bale, freestanding modules. Modules avoided the massive need for wheeled trailers during the compressed harvest season. Storage of seed cotton in modules increased rapidly from the 1970s onward, accounting for >90% of the crop in 2000. At present, the average U.S. cotton ginning capacity is ∼30 bales/h. A few gins process in excess of 100 bales/h.

Most of the U.S. gins are now operated as cooperatives or as corporations serving many cotton producers. Automatic devices do the work faster, more efficiently,and more economically than hand labor. High volume bulk seed cotton handling systems and hydraulic suction systems to remove cotton from modules, high volume trailers to get cotton into the gin, larger trailers and modules, increased processing rates for gin equipment, automatic controls, automated bale packaging and handling devices, and improved management have all increased efficiency.

After ginning, baled cotton is sampled so that grade and quality parameters can be determined (classification). The fiber quality/physical attributes affect the textile manufacturing efficiency and the quality of the finished product. Cotton bales are normally stored in warehouses in the form of highly compressed bales.The International Organization for  Standardization (ISO) specifies that bale dimensions should be of length 140 cm (55 in.), width 53.3 cm (21 in.), height 70–90 cm (27.6–35.4 in.), and density of 360–450 kg/m 3 (22.4–28 lb/ft 3) . Bales of cotton produced in the United States meet these dimensional standards. Bales of cotton packaged in accordance with these dimensions (ISO 8115) are not considered a flammable solid by the International Maritime Organization and the U.S. Department of Transportation for transportation purposes for vessel and other types of shipment  and are considered to present no measurable pest risk to the importing country. Baled cotton fiber is merchandized and shipped by the merchant to the textile
mill for manufacturing into products for the consumer. The seed is shipped directly for feeding to dairy cattle or to a cottonseed oil mill for crushing.

Digg This

Short Staple Processing


Yarns are continuous strands of fibers that can be woven or knitted into fabrics. The term, “spinning” refers both to the final yarn-making operation that puts a twist in the yarn and also to the entire sequence of operations that convert raw fibers into usable yarns. Yarn making from staple fibers involves picking (opening, sorting, cleaning, blending), carding and combing (separating and aligning), drawing (re-blending), drafting (drawing into a long strand) and spinning (further drawing and twisting)3. Silk and synthetic filaments are produced by a less extensive procedure. Current high-production yarn-making operations are performed on integrated machines that perform this entire sequence as one combined operation.

Picking (Including Opening and Blending)

Includes the separation of the raw fibers from unwanted material: leaves, twigs, dirt, any remaining seeds, and other foreign items. The fibers are first blended with fibers from different lots or other sources to provide uniformity. (They also may be blended with different fibers to provide improved properties in the final fabric.) When cotton fibers are processed, the raw cotton is run through a cotton ginning operation and then undergoes a cleaning sequence before it is pressed into rectangular bales for shipment to the textile mill. There, the picking starts with a blending machine operation. Bales are opened and cotton from several lots is fed to the machine. The cotton then proceeds to an opening machine that opens tufts of cotton with spiked teeth that pull the fibers apart. Up to three stages of picking follow, after which the cotton is often in the form of a lay, a roll of cotton fiber about 40 in (1 m) wide, 1 n (25 mm) thick and weighing about 40 lb. (18 kg)1. Figs. 1a, 1b and 1c show the lending, opening and picking operations.

Figure 1a: Blending and feeding cotton fibers. Cotton from bales (1), is dropped onto an apron conveyor (2), and moves to another apron conveyor (3), whose surface is covered with spikes. The spikes carry the cotton upward where some of it is knocked off by a ribbed roller(4). The cotton knocked back mixes with cotton carried by the spiked apron. Cotton that passes the knock-back roller is stripped off by another roll (5) and falls (6) to a conveyor that carries it to the next operation. (Illustration used with permission, Dan River Inc.).

image

Figure 1b: Opening cotton fibers—Cotton from the blending operation falls on an apron conveyor (1) and passes between feeder rolls (2) to a beater cylinder (3). The beater cylinder has rapidly rotating blades that take small tufts of cotton from the feeder rolls, loosen the bunches, remove trash, and move the cotton to the pair of screen rolls (4). The surfaces of these rolls are covered with a screen material. Air is drawn through the screens by a fan (5),pulling the cotton against the screens and forming a web. Small rolls (6), pull the cotton from the screen rolls and deposit it on another conveyor (7), that carries it to another beater (8), that removes more trash. The cotton then moves to the picker operation. (Illustration used with permission, Dan River Inc.)

image

Figure 1c: Picking cotton fibers—Cotton from the opening operation falls on an apron conveyor (1) which moves it to the first of a series of beaters (2), and screen rolls (3). The beaters and screen rolls in the series are all similar but are progressively more refined as the bottom moves through the equipment. Each beater removes more trash from the cotton. When it reaches the output section (4), the cotton is in the form of a web or lap that is wound into lap roll (5) by winding rolls (6). The lap roll in then ready to be transported to the carding equipment. (Illustration used with permission, Dan River Inc.)

Carding

Is a process similar to combing and brushing. It disentangles bunches and locks of fibers and arranges them in a parallel direction. It also further eliminates burrs and other foreign materials and fibers that are too short. The operation is performed on cotton, wool, waste silk,and synthetic staple fibers by a carding machine that consists of a moving conveyor belt with fine wire brushes and a revolving cylinder, also with fine wire hooks or brushes. The fibers from the picking operation are called “picker lap”, and are fed between the belt and the cylinder whose motions pull the fibers in the same direction to form a thin web. The web is
fed into a funnel-like tube that forms it into a round rope-like body about 3/4 in (2 cm) in diameter. This is called a sliver or card sliver. The carding operation is illustrated in Fig.

image

Figure:Carding cotton fibers—The lap (1) from the picking operation is unrolled and fed by the feed roll (2), to the lickerin roll (3), which has wire shaped like saw teeth. The lickerin roll moves the lap against cleaner bars (4), that remove trash, and passes it to the large cylinder (5). The surface of the large cylinder holds the cotton with thousands of fine wires.The flats (6), with more fine wires, move in the direction opposite to that of the large cylinder.The cotton remains on the large cylinder until it reaches the doffer cylinder (7), which removes it from the large cylinder. A doffer comb (8), vibrates against the doffer cylinder and removes the cotton from it. The cotton, in a filmy web, passes through condenser rolls (9),and into a can through a coiler head (10). The subsequent operation is either combing or drawing. (Illustration used with permission, Dan River Inc.)

Combing

Is an additional fiber alignment operation performed on very fine yarns intended for finer fabrics. (Inexpensive and coarser fabrics are made from slivers processed without this further refining.) Fine-tooth combs are applied to the sliver from carding, separating out the shorter fibers, called noils, and aligning the longer fibers to a higher level of parallelism. The resulting strand is called a comb sliver. With its long fibers, the comb sliver provides a smoother, more even yarn.

Drawing (Drafting), (Re-Blending)

After carding and, if performed, combing, several slivers are combined into one strand that is drawn to be longer and thinner. Drawing frames have several pairs of rollers through which he slivers pass. Each successive pair of rollers runs at a higher speed than the preceding pairso that the sliver is pulled longer and thinner as it moves through the drawing frame. The operation is repeated through several stages. The drawing operations produce a product called roving which has less irregularities than the original sliver. Afterward, the finer sliver is given a slight twist and is wound on bobbins. Fig. 10B4 illustrates the drawing operation.Figure

image

Figure : Drawing—Cans (1), filled with slivers from the carding operation, feed the slivers to the drawing frame. The slivers pass through spoons (2), that guide the slivers and stop the equipment if any should break. The rollers (3), turn successively faster as the slivers move through them, reducing the size of the slivers and increasing their length approximately six fold. At this point, the slivers are combined into one which is deposited into a can (4), by coiler head. The sliver fibers are much more parallel, and the combined sliver is much more uniform after the operation, which is usually repeated for further improvement of the cotton slivers. (Based on an illustration from Dan River, Inc. Used with permission.)

Spinning (Twisting)

Further draws out and twists fibers to join them together in a continuous yarn or thread. The work is performed on a spinning frame after drawing. The twist is important in providing sufficient strength to the yarn because twisting causes the filaments to interlock further with one another. The roving passes first through another set of drafting rolls, resulting in lengthened yarn of the desired thickness.

There are three kinds of spinning frames: ring spinning, open-end (rotor) spinning, and air-jet spinning. With the common ring spinner, the lengthened yarn is fed onto a bobbin or spool on rotating spindle. The winding is controlled by a traveller feed that moves on a ring around the spindle but at a slower speed than that of the spindle. The result is a twisting of the yarn.The yarn guide oscillates axially during winding to distribute the yarn neatly on the bobbin.The yarn can then be used to weave or knit textile fabrics or to make thread, cord or rope.Staple yarns, made from shorter fibers require more twist to provide a sufficiently strong yarn;filaments have less need to be tightly twisted. For any fiber, yarns with a smaller amount of twist produce fabrics with a softer surface; yarns with considerable twist, hard-twisted yarns,provide a fabric with a more wear resistant surface and better resistance to wrinkles and dirt,but with a greater tendency to shrinkage. Hosiery and crepe fabrics are made from hard twisted
yarns. Fig.  illustrates ring spinning.

image

Figure : Ring spinning. Spun sliver from the drawing operations, which is then called roving, and is wound on bobbins (1), and is fed through another series of drawing rollers (2),that further draw the strand to its final desired thickness. A larger bobbin (4) on a rotating spindle (3), turns at a constant speed. The speed of the final pair of drawing rollers is set a the speed that delivers the yarn so that it is twisted by the desired amount as it is wound on the bobbin. The yarn is guided by the traveller (5), which slides around the bobbin on the ring (6).Because of some drag on the traveller, the yarn winds on the bobbin at the same rate of speed as it is delivered by the final pair of rollers. (Illustration used with permission, Dan RiverInc.)

Spinning Synthetic Fibers

The term “spinning” is also used to refer to the extrusion process of making synthetic fibbers forcing a liquid or semi-liquid polymer (or modified polymer, e.g., rayon) through small holes in an extrusion die, called a spinneret, and then cooling, drying or coagulating the resulting filaments. The fibers are then drawn to a greater length to align the molecules. This increases their strength. The monofilament fibres may be used directly as-is, or may be cut into shorter lengths, crimped into irregular shapes and spun with methods similar to thoseused with natural fibers. These steps are taken to give the synthetic yarns the same feel and
appearance as natural yarns when they are made into thread, garments and other textile products. (Section A2, above, describes wet and dry spinning methods of making rayon and acetate fibers.)

Digg This

Cotton Fibers 2


Once Valledupar's main economic produce; Cotton
Image via Wikipedia

WHAT IS COTTON?:

COTTON is defined as white fibrous substance covering seeds harvested from Cotton Plant.

SEED COTTON (called Kapas in India – Paruthi in Tamil)harvested from Cotton Plant.

LINT COTTON (RUIA in Hindi, PANJU in Tamil) is obtained by removing the seeds in a ginning machine.

LINT COTTON is spun into Yarn, which is woven or knitted into a Fabric. Researchers have found that cotton was grown more than 9000 years ago. However large scale cultivation commenced during middle of 17th Century AD.

Many varieties of Cotton are cultivated mainly from 3 important genetic species of Gossipium.

G. HIRSUTUM – 87% Grown in America, Africa, Asia, Australia Plant grows to a height of 2 Meters.

G. BARBADENSE– 8% Grown in America, Africa & Asia. Plant grows to a height of 2.5 Meters with yellow flowers, long fibers with good quality, fibers with long staple and fineness

G. Arboreum – 5% Perennial plant grows up to 2 meters with red flowers, poor quality fibers in East Africa and South East Asia.

There are four other species grown in very negligible quantities. Cotton harvested from the Plant by hand – picking or machine picking is ginned to remove seeds and the lint is pressed into Bales for delivery to Spinning Mills. Cotton is Roller Ginned (RG) or Saw Ginned (SG) depending varieties and ginning practices.

Cotton is cultivated in 75 Countries with an area of 32 Million Hectares. Cultivation period varies from 175 days to 225 days depending on variety. Cotton is harvested in two seasons, summer and winter seasons.

Saw ginned cotton is more uniform and cleaner than Roller Ginned Cotton. But fibers quality is retained better quality in Roller Ginning than Saw Ginning which has high productivity.

Cotton Fiber is having a tubular structure in twisted form. Now. researchers have developed coloured cotton also. As on date, percentage of Cotton fiber use is more than synthetic fibers. But, its share is gradually reducing. Cotton is preferred for under garments due its comfort to body skin. Synthetics have more versatile uses and advantage for Industrial purposes.

PROPERTIES OF COTTON

No other material is quite like cotton. It is the most important of all natural fibres, accounting for half of all the fibres used by the world’s textile industry.
Cotton has many qualities that make it the best choice for countless uses:
Cotton fibres have a natural twist that makes them so suitable for spinning into a very strong yarn.
The ability of water to penetrate right to the core of the fibre makes it easy to remove dirt from the cotton garments, and creases are easily removed by ironing.
Cotton fabric is soft and comfortable to wear close to skin because of its good moisture absorption qualities.
Charges of static electricity do not build up readily on the clothes.

HISTORY OF COTTON

Nobody seems to know exactly when people first began to use cotton, but there is evidence that it was cultivated in India and Pakistan and in Mexico and Peru 5000 years ago. In these two widely separated parts of the world, cotton must have grown wild. Then people learned to cultivate cotton plants in their fields.
In Europe, wool was the only fiber used to make clothing. Then from the Far East came tales of plants that grew “wool”. Traders claimed that cotton was the wool of tiny animals called Scythian lambs, that grew on the stalks of a plant. The stalks, each with a lamb as its flower, were said to bend over so the small sheep could graze on the grass around the plant. These fantastic stories were shown to be untrue when Arabs brought the cotton plant to Spain in Middle Ages.

In the fourteenth century cotton was grown in Mediterranean countries and shipped from there to mills in the Netherlands in western Europe for spinning and weaving. Until the mid eighteenth century, cotton was not manufactured in England, because the wool manufacturers there did not want it to compete with their own product. They had managed to pass a law in 1720 making the manufacture or sale of cotton cloth illegal. When the law was finally repealed in 1736, cotton mills grew in number. In the United States though, cotton mills could not be established, as the English would not allow any of the machinery to leave the country because they feared the colonies would compete with them. But a man named Samuel Slater, who had worked in a mill in England, was able to build an American cotton mill from memory in 1790.

GROWING THE COTTON

Cotton plant’s leaves resemble maple leaves and flowers look very much like pink mallow flowers that grow in swampy areas. They are relatives and belong in the same plant family.

Cotton is grown in about 80 countries, in a band that stretches around the world between latitudes 45 North to 30 South. For a good crop of cotton a long, sunny growing season with at least 160 frost-free days and ample water are required. Well drained, crumbly soils that can keep moisture well are the best. In most regions extra water must be supplied by irrigation. Because of it’s long growing season it is best to plant early but not before the sun has warmed the soil enough.

Seedlings appear about 5 days after planting the seeds. Weeds have to be removed because they compete with seedlings for water, light and minerals and also encourage pests and diseases. The first flower buds appear after 5-6 weeks, and in another 3-5 weeks these buds become flowers.
Each flower falls after only 3 days leaving behind a small seed pot, known as the boll. Children in cotton-growing areas in the South sometimes sing this song about the flowers:
First day white, next day red,
third day from my birth – I’m dead.
Each boll contains about 30 seeds, and up to 500 000 fibres of cotton. Each fibre grows its full length in 3 weeks and for the following 4-7 weeks each fiber gets thicker as layers of cellulose build up the cell walls. While this is happening the boll matures and in about 10 weeks after flowering it splits open. The raw cotton fibres burst out to dry in the sun. As they lose water and die, each fibre collapses into what looks like a twisted ribbon. Now is time for harvesting. Most cotton is hand-picked. This is the best method of obtaining fully grown cotton because unwanted material, called “trash”, like leaves and the remains of the boll are left behind. Also the cotton that is too young to harvest is left for a second and third picking. A crop can be picked over a period of two months as the bolls ripen. Countries that are wealthy and where the land is flat enough usually pick cotton with machines – cotton harvesters.

GLOBAL COTTON – VATIETIES – PLANTING AND HARVESTING PERIODS

SNo Country Planting Period Harvesting Staple-mm Mike Variety
1 AFGHANISTAN APRIL-MAY OCT-DEC 26-28 4.0 ACALA
2 ARGENTINA SEPT-OCT FEB-JUNE 24-28 3.9-4.1 TOBA
3 AUSTRALIA SEPT-NOV MAR-JUNE 24-29 3.2-4.9 DPL
4 BRAZIL OCT-NOV MAR-JUNE 26-28 3.2-4.0 IAC
BRAZIL PERENNIAL 32-35 3.2-4.8 MOCO
5 BURKIN JUNE-JULY NOV-DEC 25-28 3.6-4.8 ALLEN
6 CAMERRON JUNE NOV-DEC 25-28 3.8-4.3 ALLEN
7 CENTRAL AFRICA JUN-JULY NOV-DEC 25-28 3.8-4.2 ALLEN
8 CHAD JUNE NOV-DEC 25-28 3.8-4.4 ALLEN
9 CHINA APRIL-JUNE SEP-OCT 22-28 3.5-4.7 SHANDONG
XINJIANG
MNH-93
10 COTED IVORIE JUN-AUG OCT-JAN 24-28 2.6-4.6 ALLEN
11 EGYPT MARCH SEP-OCT 31-40 3.24.6 GIZA
12 GREECE APRIL SEPT-OCT 26-28 3.8-4.2 4S
13 INDIA APRIL-NOV SEP-NOV 16-38 2.8-7.9 SEPARATE LIST
INDIA SEPT-NOV FEB-APR
14 IRAN MAR-APR SEP-NOV 26-28 3.9-4.5 COKER
15 ISRAEL APRIL SEP-OCT 26-37 3.5-4.3 ACALA
PIMA
16 KAZAKSTAN APR-MAY SEP-NOV
17 MALI JUN-JUL OCT-NOV 26-27 3.7-4.5 BJA
18 MEXICO MAR-JUNE AUG-DEC 26-29 3.5-4.5 DELTAPINE
19 MOZAMBIQUE NOV-DEC APR-MAY 25-29 3.6-4.2 A637
20 NIGARIA JUL-AUG DEC-FEB 24-26 2.5-4.0 SAMARU
21 PAKISTAN APR-JUN SEP-DEC 12-33 3.5-6.0
22 PARAGUAY OCT-DEC MAR-APR 26-28 3.3-4.2 EMPIRE
23 PERU JUL-NOV FEB-AUG 29-.8 3.3-4.2 TANGUIS
PIMA
24 SPAIN APR-MAY SEP-NOV 25-28 3.3-4.9 CAROLINA
25 SUDAN AUG JUN-APR 27-E0 3.8-4.2 BARAKAT
ACALA
26 SYRIA APR-MAY SEP-NOV 25-29 3.8-4.8 ALEPPO
27 TAZIKSTAN APR-MAY SEP-NOV
28 TOGO JUN-JUL NOV-DEC 28-29 4.3-5.5 ALLEN
29 TURKMENISTAN APR-MAY SEP-NOV 24-29 3.5-5.5 DELTAPINE
COKER
30 TURKEY APR-MAY SEP-NOV 24-28 3.5-5.5 DELTAPINE
31 UGANDA APR-JUN NOV-FEB 26-28 3.3-4.8 BAP-SATU
32 UZBEKISTAN APR-MAY SEP-NOV 24-41 3.5-4.7
33 USA APR-MAY SEP-DEC 26-40 3.8-4.5 VARIETIES
28-30 3.0-4.0 ACALA 151T
28-29 3.8-4.6 DELTAPINENC
25-28 3.2-4.6 PAYMASTER 280
27-28 3.7-4.7 STONOVILLE ST
35-40 3.5-4.5 PIMA S7
34 YEMEN AUG-SEP JUN-APR 36-40 3.5-4.9 K4

COTTON AND YARN QUALITY CO-RELATION:

Instead of buying any cotton available at lowest price, spinning it to produce yarn of highest count possible and selling Yam at any market in random, it is advisable to locate a good market where Yarn can be sold at highest price and select a Cotton which has characteristics to spin Yarn of desired specifications for that market.

ESSENTIAL CHARACTERISTICS of cotton quality and characteristics of Yarn quality of Yarn are given from detailed experimental investigations. Some of the important conclusions which help to find co-relation between Yarn quality and Cotton quality are given below

  • STAPLE LENGTH: If the length of fiber is longer, it can be spun into finer counts of Yarn which can fetch higher prices. It also gives stronger Yarn.
  • STRENGTH : Stronger fibers give stronger Yarns. Further, processing speeds can be higher so that higher productivity can be achieved with less end-breakages.
  • FIBER FINENESS: Finer Fibers produce finer count of Yarn and it also helps to produce stronger Yarns.
  • FIBER MATURITY : Mature fibers give better evenness of Yarn. There will be less end – breakages . Better dyes’ absorbency is additional benefit.
  • UNIFORMITY RATIO: If the ratio is higher. Yam is more even and there is reduced end-breakages.
  • ELONGATION :A better value of elongation will help to reduce end-breakages in spinning and hence higher productivity with low wastage of raw material.
  • NON-LINT CONTENT: Low percentage of Trash will reduce the process waste in Blow Room and cards. There will be less chances of Yarn defects.
  • SUGAR CONTENT: Higher Sugar Content will .create stickiness of fiber and create processing problem of licking in the machines.
  • MOISTURE CONTENT : If Moisture Content is more than standard value of 8.5%, there will be more invisable loss. If moisture is less than 8.5%, then there will be tendency for brittleness of fiber resulting in frequent Yarn breakages.
  • FEEL : If the feel of the Cotton is smooth, it will be produce more smooth yarn which has potential for weaving better fabric.
  • CLASS : Cotton having better grade in classing will produce less process waste and Yarn will have better appearance.
  • GREY VALUE: Rd. of calorimeter is higher it means it can reflect light better and Yam will give better appearance.
  • YELLOWNESS : When value of yellowness is more, the grade becomes lower and lower grades produce weaker & inferior yarns.
  • NEPPINESS : Neppiness may be due to entanglement of fibers in ginning process or immature fibers. Entangled fibers can be sorted out by careful processing But, Neps due to immature fiber will stay on in the end product and cause the level of Yarndefects to go higher.

An analysis can be made of Yarn properties which can be directly attributed to cotton quality.

1. YARN COUNT: Higher Count of Yarn .can be produced by longer, finer and stronger fibers.

2. C.V. of COUNT: Higher Fiber Uniformity and lower level of short fiber percentage will be beneficial to keep C.V.(Co-efficient of Variation) at lowest.

3. TENSILE STRENGTH : This is directly related to fiber strength. Longer Length of fiber will also help to produce stronger yarns.

4. C.V. OF STRENGTH : is directly related CV of fiber strength.

5. ELONGATION : Yam elongation will be beneficial for weaving efficiently. Fiber with better elongation have positive co-relation with Yarn elongation.

6. C.V. OF ELONGATION: C.V. of Yarn Elongation can be low when C.V. of fiber elongation is also low.

7. MARS VARIATION : This property directly related to fiber maturity and fiber uniformity.

8. HAIRINESS : is due to faster processing speeds and high level of very short fibers,

9. DYEING QUALITY : will defend on Evenness of Yarn and marketing of cotton fibers.

10. BRIGHTNESS : Yarn will give brighter appearance if cotton grade is higher.

COTTON QUALITY SPECIFICATIONS:

The most important fiber quality is Fiber Length

Length

Staple
classification
Length mm Length inches Spinning Count
Short Less than 24 15/16 -1 Coarse Below 20
Medium 24- 28 1.1/132-1.3/32 Medium Count 20s-34s
Long 28 -34 1.3/32 -1.3/8 Fine Count 34s – 60s
Extra Long 34- 40 1.3/8 -1.9/16 Superfine Count 80s – 140s

Notes:

  • Spinning Count does not depend on staple length only. It also depends on fineness and processing machinery.
  • Length is measured by hand stapling or Fibrograph for 2.5% Span Length
  • 2.5%SL (Spun Length) means at least 2.5% of total fibers have length exceeding this value.
  • 50% SL means at least 50% of total fibers have length exceeding this value.

LENGTH UNIFORMITY

Length Uniformity is Calculated by 50SL x 100 / 2.5 SL

Significance of UR (Uniformity Radio) is given below:

UR% Classification 50-55
Very Good 45-50 Good 40-45
Satisfactory 35-40
Poor Below 30 Unusable
M= 50% SL
UHM SL – Average value of length of Longest of 50% of Fibers
UI Uniformity Index
UI M/UHM

Interpretation of Uniformity Index

U.INDEX CLASSIFICATION UHM CLASSIFICATION
Below 77 Very low Below 0.99 Short
77-99 Low 0.99-1.10 Medium
80-82 Average 1.11-1.26 Long
83-85 High Above 1.26 Extra Long
Above 85 Very High

Now Uniformity is measured by HVI

Fiber Strength

Fiber Strength, next important quality is tested using Pressley instrument and the value is given in Thousands of Pounds per Square inch. (1000 psi) For better accuracy, Stelometer is used and results are given in grams / Tex.

Lately, strength is measured in HVI (High Value Instrument) and result is given in terms of grams/tex.

Interpretation of Strength value is given below

G/tex Classification
Below 23 Weak
24-25 Medium
26-28 Average
29-30 Strong
Above 31 Very Strong

Strength is essential for stronger yarns and higher processing speeds.

  • Fiber Fineness Fiber Fineness and maturity are tested in a conjunction using Micronaire Instrument.
  • Finer Fibers give stronger yarns but amenable for more neppiness of Yarn due to lower maturity.
  • Micronaire values vary from 2.6 to 7.5 in various varieties.

FINENESS AND MATURITY

Usually Micronaire value is referred to evaluate fineness of Cotton and its suitability for spinning particular count of Yarn. As the value is a combined result of fineness and maturity of Cotton fiber, it cannot be interpreted, property for ascertaining its spinning Value. This value should be taken in conjunction with standard value of Calibrated Cotton value.

The following table will explain that micronaire value goes up along with maturity but declines with thickness of fiber. An Egyptian variety of Cotton, three samples of High maturity. Low maturity and Medium maturity were taken and tested. Test results are given below,

Maturity Micronaire Perimeter Maturity Maturity Ratio
High 4.3 52.9 85.1 1.02
Medium 4.0 54.4 80.1 0.96
Low 3.9 54.7 79.3 0.95

Here, Micronaire Value of 4.3 is higher than 3.9 of low maturity cotton Another Greek Cotton was tested and results are give below

High 3.8 57.0 75.1 0.88
Medium 3.5 54.9 70.7 0.84
Low 3.2 55.2 65.8 0.80

Micronaire Value of 3.8 is higher than 3.2 of low maturity cotton. Another American Cotton was tested and results are as follows

High 4.1 64.4 75.9 0.87
Medium 3.4 62.1 68.0 0.80
Low 2.7 59.8 56.1 0.67

Hence, it is essential to know what Micronaire value is good for each variety of Cotton.

Maturity Ratio Classification
1.00 and above Very Mature
0.95 – 1.0 Above Average
0.85 – 0.95 Mature
0.80 – 0.85 Below Average
Less than 0.80 immature

COTTON GRADE

Cotton grade is determined by evaluating colour, leaf and ginning preparation. Higher grade cottons provide better yarn appearance and reduced process waste.

Colour is determined by using Nickerson-Hunter Calorimeter. This gives values Rd (Light or Dark) and +b (Yellowness).

AMERICAN UPLAND COTTONS ARE CLASSIFIED
ACCORDING TO GRADES AS GIVEN BELOW

WHITE COLOUR

S.NO GRADE SYMBOL CODE
1 GOOD MIDDLING GM 11
2 STRICT MIDDLING SM 21
3 MIDDLING M 31
4 STRICT LOW MIDDLING SLM 41
5 LOW MIDDLING LM 51
6 STRICT GOOD ORDINARY SGO 61
7 GOOD ORDINARY GO 71
8 BELOW GRADE

Similar grading is done for Light Spotted, Spotted, Tinged and Yellow Stained Cottons. PIMA cottons are graded I to 9

HOW TO BUY COTTON?

COTTON BUYING is the most important function that will contribute to optimum profit of a Spinning Mill.

EVALUATION of cotton quality is generally based more on experience rather than scientific testing of characteristics only.

TIMING of purchase depends on comprehensive knowledge about various factors which affect the prices.

CHOOSING the supplier for reliability of delivery schedules and ability to supply cotton within the prescribed range of various parameters which define the quality of Cotton.

BARGINING for lowest price depends on the buyer’s reputation for prompt payment and accept delivery without dispute irrespective of price fluctuations.

ORGANISING the logistics for transportation of goods and payment for value of goods will improve the benefits arising out of the transaction.

PROFIT depends on producting high quality Yarn to fetch high prices. Influence of quality of raw material is very important in producing quality Yarn. But, quality of yam is a compound effect of quality of raw material, skills of work-force, performance of machines,- process know-how of Technicians and management expertise.

A good spinner is one who produces reasonably priced yarn of acceptable quality from reasonably priced fiber. Buying a high quality, high priced cotton does not necessarily result in high quality Yarn or high profits.

GUIDELINES FOR COTTON CONTRACTS:

Buyer and seller should clearly reach correct understanding on the following factors.

1. Country of Origin, Area of Growth, Variety, Crop year

2. Quality – Based on sample or

Description of grade as per ASTM standard or sample
For grade only and specifying range of staple length,
Range of Micronaire, range of Pressley value, uniformity,
Percentage of short fiber, percentage of non-lint content,
Tolerable level of stickiness

3. Percentage of Sampling at destination

4. Procedure for settling disputes on quality or fulfillment of contract obligations.

5. Responsibility regarding contamination or stickiness.

6. Price in terms of currency, Weight and place of delivery.

7. Shipment periods

8. Certified shipment weights or landing Weights

9. Tolerances for Weights and Specifications

10. Port of Shipment and port of destination, partial shipments allowed or not, transshipment allowed or not, shipments in containers or Break-bulk carriers

11. Specifications regarding age of vessels used for shipment, freight payment in advance or on delivery

12. Responsibility regarding Import & Export duties

13. Terms of Insurance cover

14. Accurate details of Seller, Buyer and Broker

15. Terms of Letter of. Credit regarding bank .negotiation, reimbursement and special conditions, if any

Choose Correct Supplier or Agent:

Apart from ensuring correct terms of Contract, Buyer should ensure that purchase is made from Reliable Supplier or through a Reliable Agent. Some suppliers evade supplies under some pretext if the market goes up. Otherwise, they supply inferior quality Either way buyer suffers.

By establishing long term relationship will reliable Suppliers, Buyers can have satisfaction of getting correct quality, timely deliveries and fair prices.

CHOOSING SUPPLIER:

It is good to establish long term relationship with a few Agents who represent reputed Trading Companies in various Cotton Exporting Countries. They usually give reliable market information on quality, prices and market trends so that buyer can take intelligent decision. As cotton is not a manufactured Commodity, it is good to buy from dependable suppliers, who will ensure supply of correct quality with a variation within acceptable limits at correct price and also deliver on due date.

CHOOSING QUALITY:

In a market with varying market demand situation. Buyers should decide which counts of Yarn to spin. Buyer can call for samples suitable for spinning Yarn counts programmed for production. Many spinners plan to do under-spinning. For Example, cotton suitable for 44s is used for spinning 40s. Some spinners do over-spinning. They buy cotton suitable for 40s and spin 44s count. But, is advisable to spin optimum count to ensure quality and also keep cost of raw material at minimum level as for as possible. Some spinners also buy 2 or more varieties and blend them for optimum spinning. For’ this purpose, a good knowledge to evaluate cotton quality and co-relate with yarn properties of required specifications. Cotton buyer should develop expertise in assessing cotton quality. Machine tests must be done only to confirm manual evaluation.

TAKING RIGHT OPTION:

It is not advisable just to look at price quoted by supplier. Correct costing should be done to work out actual cost when the cotton arrives at Mills. Further lowest price does not always mean highest profit for buying. Profitability may be affected by anyone or more of the following factors.

  • If the trash is higher, more waste will be produced reducing the Yarn out- turn and hence profit.
  • If the uniformity is less, end – breakages will be more reducing productivity and profitability.
  • If grade is poor or more immature fibers are found in cotton, the yarn appearance will be affected and Yarn will fetch lesser price in the market.
  • If the transit period for transport of cotton is longer, then also profitability will be reduced due blocking of funds for a longer period and increased cost of Interest.
  • Rate of Sales Tax varies from State to State. This must be taken in to account.
  • Hence, thorough costing should be worked out before deciding on the quoted pnce onlv

The margin of profit in spinning cotton should be calculated before deciding on The various options available depending on market conditions should be studied.

The factors to be considered for taking options are as follows.

  • Count for which demand is good in market
  • Prices for various counts for which demand exists.
  • Cost of manufacturing various counts.
  • Adequacy of machinery for the selected count.
  • Various varieties of cotton available for spinning the selected count.
  • Profit margin for each count using different varieties.
  • Price quoted by different Agents for same variety of selected cotton.
  • Reliability of supplier for quality and timely delivery.

Cost Consideration:

Apart from the price quoted by the seller, other incidental costs must be taken into consideration before buying.

a) Duration for goods to reach Buyer’s godown from the seller’s Warehouse. If the duration is longer, buyer will incur higher interest charges.

b) Cost of Transportation and taxes.

Resolution of differences

If any discrepancy arises in the quality, weight and delivery periods, sellers should be willing to resolve the differences amicably and quickly. In case the matter is referred to Arbitrator, the award of the Arbitrator must be immediately enforced.

Bench Marks for Easy Reference

It is better if quality bench marks are established for different varieties so that buying decisions are easy for buyers Following standards have been found to be appropriate for Strict Middling Grade Cotton of staple 1.3/32″.

  1. Staple Length ( 2.5% Spun Length) – Minimum 1.08″ or 27.4 mm
  2. Micronaire : Minimum 3.8, Maximum-4.6 Variation within bulk sample should not be more than _ 0.1
  3. Colour : Rd not less than 75 not more than 10
  4. Nep Content: Less than 150 per gram
  5. Strength : More than 30 grams/tex
  6. Length Uniformity Ratio: Not less than 85%
  7. Elongation : More than 8%
  8. Short Fiber Content: Less than 5%
  9. Seed Count Fragments : Less than 15 per grams
    1. Commercial Bench marks can be given as follows:
      1. Price Competitiveness
      2. Price Stability
      3. Easy Availability throughout year
      4. Uniform Classing and Grading system
      5. Even- running Cotton in all Characteristics
      6. Reliable deliveries òr Respect for sanctity of contract.

QUALITY EVALUATION:

The need for quality evaluation is for following purposes

a) To get optimum quality at lowest price.
b) To decide whether cotton bought will can be processed to spin Yarn of desired specifications.
c) To check the quality of sample cotton with quality of delivered cotton.
d) To decide about correct machine settings and speeds for processing the cotton
e) To estimate profitability of purchase decisions.

Knowing the cotton properties is only half the battle for profits. It needs expertise to know how to get best of its value.

Currently popular instrument called HVI gives ready information on various parameters to make correct purchase decisions.

If may not be possible to get all the desired qualities in one variety or one lot of Cotton. In such case, an intelligent decision to select best combination of different varieties or lots to get desired Yam quality is necessary to get optimum yarn quality at optimum cost.

If correct evaluation is made, profits are large. Hence, evaluation of quality is essential for optimum profit making and also make the customers happy with supply of correct quality of Yarn.

Expert classers can manage to achieve reasonable level of correct evaluation. Now, with availability of better instruments, it is better to check qualities to make sure that desired quality of cotton is procured.  These details should give cotton buyer reasonable guidance to make correct evaluation of cotton quality and ensure its suitability for producing required quality of yarn.

QUALITY EVALUATION        CHARACTERISTICS CO-RELATION TO YARN
1. Staple Length Spinning Potential
2. Fiber Strength Yarn strength, less Breakages
3. Fineness   Finer Spinning Potential
4. Maturity Yarn Strength and even ness, better dyeing
5. Non-Lint.content (Trash) Reduced Waste
6, Uniformity Ratio Better productivity and Evenness
7. Elongation Less end Breakages
8, Friction Cohesiveness
9. Class Yarn Appearance
10.Stickiness Spinning problem by lapping & Dyeing quality
11. Grey Value Yarn lustre
12. Yellowness Yarn Appearance
13.Neppiness Yarn neppiness
14. Moisture Content 8.5% moisture content optimum for spinning at 65%

QUALITY TESTING INSTRUMENTS:

Instrument Measurements
Fibrogaph   Length
Pressley Apparatres Fiber Bundle Strength
HV I Instrument Length, Strength, Uniformity, Elongation, Micronaire, Color and Trash
Stelometer Instrument Strength, Elongation
Micronaire Combined test of fineness & maturity
Shirley Trash Analyser Trash Content
Manual Test Class & staple length
Moisture Meter Moisture
Colorimeter Grey value & yellow ness. Brightness
Polarised light Microscope or
Casricaire test
Maturity
Photographic film   Neppiness

clip_image001clip_image002

Digg This

Cotton Fiber 1


I took photo with Canon camera.
Image via Wikipedia

COTTON FIBRE GROWTH:

  • Improvements in cotton fiber properties for textiles depend on changes in the growth and development of the fiber.
  • Manipulation of fiber perimeter has a potential to impact the length, micronaire, and strength of cotton fibers. The perimeter of the fiber is regulated by biological mechanisms that control the expansion characteristic of the cell wall and establish cell diameter.
  • mprovements in fiber quality can take many different forms. Changes in length, strength, uniformity, and fineness   In one recent analysis, fiber perimeter was shown to be the single quantitative trait of the fiber that affects all other traits . Fiber perimeter is the variable that has the greatest affect on fiber elongation and strength properties. While mature dead fibers have an elliptical morphology, living fibers have a cylindrical morphology during growth and development. Geometrically, perimeter is directly determined by diameter (perimeter = diameter × p). Thus, fiber diameter is the only variable that directly affects perimeter. For this reason, understanding the biological mechanisms that regulate fiber diameter is important for the long-term improvement of cotton.
  • A review of the literature indicates that many researchers believe diameter is established at fiber initiation and is maintained throughout the duration of fiber development . A few studies have examined, either directly or indirectly, changes in fiber diameter during development. Some studies indicate that diameter remains constant ; while others indicate that fiber diameter increases as the fiber develops.
  • The first three stages occur while the fiber is alive and actively growing. Fiber initiation involves the initial isodiametric expansion of the epidermal cell above the surface of the ovule. This stage may last only a day or so for each fiber. Because there are several waves of fiber initiation across the surface of the ovule , one may find fiber initials at any time during the first 5 or 6 d post anthesis. The elongation phase encompasses the major expansion growth phase of the fiber. Depending on genotype, this stage may last for several weeks post anthesis. During this stage of development the fiber deposits a thin, expandable primary cell wall composed of a variety of carbohydrate polymers . As the fiber approaches the end of elongation, the major phase of secondary wall synthesis starts. In cotton fiber, the secondary cell wall is composed almost exclusively of cellulose. During this stage, which lasts until the boll opens (50 to 60 d post anthesis), the cell wall becomes progressively thicker and the living protoplast decreases in volume. There is a significant overlap in the timing of the elongation and secondary wall synthesis stages. Thus, fibers are simultaneously elongating and depositing secondary cell wall.
  • The establishment of fiber diameter is a complex process that is governed, to a certain extent, by the overall mechanism by which fibers expand. The expansion of fiber cells is governed by the same related mechanisms occurring in other walled plant cells. Most cells exhibit diffuse cell growth, in which new wall and membrane materials are added throughout the surface area of the cell. Specialized, highly elongated cells, such as root hairs and pollen tubes, expand via tip synthesis where new wall and membrane materials are added only at a specific location that becomes the growing tip of the cell. While the growth mechanisms for cotton fiber have not been fully documented, recent evidence indicates that throughout the initiation and early elongation phases of development, cotton fiber expands primarily via diffuse growth . Later in fiber development, late in cell elongation, and well into secondary cell wall synthesis (35 d post anthesis), the organization of cellular organelles is consistent with continued diffuse growth . Many cells that expand via diffuse growth exhibit increases in both cell length and diameter; but cells that exhibit tip synthesis do not exhibit increases in cell diameter . If cotton fiber expands by diffuse growth, then it is reasonable to suggest that cell diameter might increase during the cell elongation phase of development.
  • Cell expansion is also regulated by the extensibility of the cell wall. For this reason, cell expansion most commonly occurs in cells that have only a primary cell wall . Primary cell walls contain low levels of cellulose. Production of the more rigid secondary cell wall usually signals the cessation of cell expansion. Secondary cell wall formation is often indicated by the development of wall birefringence.
  • Analyses of fiber diameter and cell wall birefringence show that fiber diameter significantly increased as fibers grew and developed secondary cell walls. Both cotton species and all the genotypes tested exhibited similar increases in diameter; however, the specific rates of change differed. Fibers continued to increase in diameter during the secondary wall synthesis stage of development, indicating that the synthesis of secondary cell wall does not coincide with the cessation of cell expansion.

GINNING

  • The generally recommended machinery sequence at gins for spindle-picked cotton is rock and green-boll trap, feed control, tower drier, cylinder cleaner, stick machine, tower drier, cylinder cleaner, extractor feeder, gin stand, lint cleaner, lint cleaner, and press.
  • Cylinder cleaners use rotating spiked drums that open and clean the seedcotton by scrubbing it across a grid-rod or wire mesh screen that allows the trash to sift through. The stick machine utilizes the sling-off action of channel-type saw cylinders to extract foreign matter from the seedcotton by centrifugal force. In addition to feeding seedcotton to the gin stand, the extractor feeder cleans the cotton using the stick machine’s sling-off principle.
  • In some cases the extractor-feeder is a combination of a cylinder cleaner and an extractor.    Sometimes an impact or revolving screen cleaner is used in addition to the second cylinder cleaner. In the impact cleaner, seedcotton is conveyed across a series of revolving, serrated disks instead of the grid-rod or wire mesh screen.
  • Lint cleaners at gins are mostly of the controlled-batt, saw type. In this cleaner a saw cylinder combs the fibers and extracts trash from the lint cotton by a combination of centrifugal force, scrubbing action between saw cylinder and grid bars, and gravity assisted by an air current
  • Seedcotton-type cleaners extract the large trash components from cotton. However, they have only a small influence on the cotton’s grade index, visible liint foreign-matter content, and fiber length distribution when compared with the lint cleaning effects.  Also, the number of neps created by the entire seedcotton cleaning process is about the same as the increase caused by one saw-cylinder lint cleaner.
  • Most cotton gins today use one or two stages of saw-type lint cleaners. The use of too many stages of lint cleaning can reduce the market value of the bale, because the weight loss may offset any gain from grade improvement. Increasing the number of saw lint cleaners at gins, in addition to increasing the nep count and short-fiber content of the raw lint, causes problems at the spinning mill. These show up as more neps in the card web and reduced yarn strength and appearance .
  • Pima cotton, extra-long-staple cotton, is roller ginned to preserve its length and to minimize neps. To maintain the highest possible quality bale of pima cotton, mill-type lint cleaners were for a long time the predominant cleaner used by the roller-ginning industry. Today, various combinations of impacts, incline, and pneumatic cleaners are used in most roller-ginning plants to increase lint-cleaning capacity.

COTTON FIBER QUALITY:

  •     Two simple words, fiber quality, mean quite different things to cotton growers and to cotton processors.    No after-harvest mechanisms are available to either growers or processors that can improve intrinsic fiber quality.
    Most cotton production research by physiologists and agronomists has been directed toward improving yields, so the few cultural-input strategies suggested for improving fiber quality during the production season are of limited validity. Thus, producers have limited alternatives in production practices that might result in fibers of acceptable quality and yield without increased production costs.
    Fiber processors seek to acquire the highest quality cotton at the lowest price, and attempt to meet processing requirements by blending bales with different average fiber properties. Of course, bale averages for fiber properties do not describe the fiber-quality ranges that can occur within the bales or the resulting blends. Further, the natural variability among cotton fibers unpredictably reduces the processing success for blends made up of low-priced, lower-quality fibers and high-priced, higher-quality fibers.
    Blends that fail to meet processing specifications show marked increases in processing disruptions and product defects that cut into the profits of the yarn and textile manufacturers. Mill owners do not have sufficient knowledge of the role classing-office fiber properties play in determining the outcome of cotton spinning and dyeing processes.
    Even when a processor is able to make the connection between yarn and fabric defects and increased proportions of low-quality fibers, producers have no way of explaining why the rejected bales failed to meet processing specifications when the bale averages for important fiber properties fell within the acceptable ranges.
    If, on the other hand, the causes of a processing defect are unknown, neither the producer nor the processor will be able to prevent or avoid that defect in the future. Any future research that is designed to predict, prevent, or avoid low-quality cotton fibers that cause processing defects in yarn and fabric must address the interface between cotton production and cotton processing.
    Every bale of cotton produced in the USA crosses that interface via the USDA-AMS classing offices, which report bale averages of quantified fiber properties. Indeed, fiber-quality data reports from classing offices are designed as a common quantitative language that can be interpreted and understood by both producers and processors. But the meaning and utility of classing-office reports can vary, depending on the instrument used to evaluate.
  • Fiber maturity is a composite of factors, including inherent genetic fineness compared with the perimeter or cross section achieved under prevailing growing conditions and the relative fiber cell-wall thickness and the primary -to- secondary fiber cell-wall ratio, and the time elapsed between flowering and boll opening or harvest. While all the above traits are important to varying degrees in determining processing success, none of them appear in classing-office reports.
  • Micronaire, which is often treated as the fiber maturity measurement in classing-office data, provides an empirical composite of fiber cross section and relative wall thickening. But laydown blends that are based solely on bale-average micronaire will vary greatly in processing properties and outcomes.
    Cotton physiologists who follow fiber development can discuss fiber chronological maturity in terms of days after floral anthesis. But, they must quantify the corresponding fiber physical maturity as micronaire readings for samples pooled across several plants, because valid micronaire determinations require at least 10 g of individualized fiber.
  • Some fiber properties, like length and single fiber strength, appear to be simple and easily understood terms. But the bale average length reported by the classing office does not describe the range or variability of fiber lengths that must be handled by the spinning equipment processing each individual fiber from the highly variable fiber population found in that bale.
    Even when a processing problem can be linked directly to a substandard fiber property, surprisingly little is known about the causes of variability in fiber shape and maturity. For example:
  • Spinners can see the results of excessive variability in fiber length or strength when manifested as yarn breaks and production halts.Knitters and weavers can see the knots and slubs or holes that reduce the value of fabrics made from defective yarns that were spun from poor-quality fibre
  • Inspectors of dyed fabrics can see the unacceptable color streaks and specks associated with variations in fiber maturity and the relative dye-uptake success.
  • The grower, ginner, and buyer can see variations in color or trash content of ginned and baled cotton.

But there are no inspectors or instruments that can see or predict any of the above quality traits of fibers while they are developing in the boll.    There is no definitive reference source, model, or database to which a producer can turn for information on how cultural inputs could be adapted to the prevailing growth conditions of soil fertility, water availability, and weather (temperature, for example) to produce higher quality fiber.

The scattered research publications that address fiber quality, usually in conjunction with yield improvement, are confusing because their measurement protocols are not standardized and results are not reported in terms that are meaningful to either producers or processors. Thus, physiological and agronomic studies of fiber quality frequently widen, rather than bridge, the communication gap between cotton producers and processors.

This overview assembles and assesses current literature citations regarding the quantitation of fiber quality and the manner in which irrigation, soil fertility, weather, and cotton genetic potential interact to modulate fiber quality. The ultimate goal is to provide access to the best answers currently available to the question of what causes the annual and regional fiber quality variations

From the physiologist’s perspective, the fiber quality of a specific cotton genotype is a composite of fiber shape and maturity properties that depend on complex interactions among the genetics and physiology of the plants producing the fibers and the growth environment prevailing during the cotton production season.

Fiber shape properties, particularly length and diameter, are largely dependent on genetics. Fiber maturity properties, which are dependent on deposition of photosynthate in the fiber cell wall, are more sensitive to changes in the growth environment. The effects of the growth environment on the genetic potential of a genotype modulate both shape and maturity properties to varying degrees.

Anatomically, a cotton fiber is a seed hair, a single hyperelongated cell arising from the protodermal cells of the outer integument layer of the seed coat. Like all living plant cells, developing cotton fibers respond individually to fluctuations in the macro- and microenvironments. Thus, the fibers on a single seed constitute continua of fiber length, shape, cell-wall thickness, and physical maturity .

Environmental variations within the plant canopy, among the individual plants, and within and among fields ensure that the fiber population in each boll, indeed on each seed, encompasses a broad range of fiber properties and that every bale of cotton contains a highly variable population of fibers.

Successful processing of cotton lint depends on appropriate management during and after harvest of those highly variable fiber properties that have been shown to affect finished-product quality and manufacturing efficiency . If fiber-blending strategies and subsequent spinning and dyeing processes are to be optimized for specific end-uses and profitability, production managers in textile mills need accurate and effective descriptive and predictive quantitative measures of both the means and the ranges of these highly variable fiber properties .

In the USA, the components of cotton fiber quality are usually defined as those properties reported for every bale by the classing offices of the USDA-AMS, which currently include length, length uniformity index, strength, micronaire, color as reflectance (Rd) and yellowness (+b), and trash content, all quantified by the High Volume Instrument (HVI) line. The classing offices also provide each bale with the more qualitative classers’ color and leaf grades and with estimates of preparation (degree of roughness of ginned lint) and content of extraneous matter.

The naturally wide variations in fiber quality, in combination with differences in end-use requirements, result in significant variability in the value of the cotton lint to the processor. Therefore, a system of premiums and discounts has been established to denote a specified base quality. In general, cotton fiber value increases as the bulk-averaged fibers increase in whiteness (+Rd), length, strength, and micronaire; and discounts are made for both low mike (micronaire less than 3.5) and high mike (micronaire more than 4.9).

Ideal fiber-quality specifications favored by processors traditionally have been summarized thusly: “as white as snow, as long as wool, as strong as steel, as fine as silk, and as cheap as hell.” These specifications are extremely difficult to incorporate into a breeding program or to set as goals for cotton producers. Fiber-classing technologies in use and being tested allow quantitation of fiber properties, improvement of standards for end-product quality, and, perhaps most importantly, creation of a fiber-quality language and system of fiber-quality measurements that can be meaningful and useful to producers and processors alike.
GENE AND ENVIRONMENTAL VARIABILITY:

Improvements in textile processing, particularly advances in spinning technology, have led to increased emphasis on breeding cotton for both improved yield and improved fiber properties  Studies of gene action suggest that, within upland cotton genotypes there is little non-additive gene action in fiber length, strength, and fineness ; that is, genes determine those fiber properties. However, large interactions between combined annual environmental factors (primarily weather) and fiber strength suggest that environmental variability can prevent full realization of the fiber-quality potential of a cotton genotype.
More recently, statistical comparisons of the relative genetic and environmental influences upon fiber strength suggest that fiber strength is determined by a few major genes, rather than by variations in the growth environment . Indeed, spatial variations of single fertility factors in the edaphic environment were found to be unrelated to fiber strength and only weakly correlated with fiber length .

Genetic potential of a specific genotype is defined as the level of fiber yield or quality that could be attained under optimal growing conditions. The degree to which genetic potential is realized changes in response to environmental fluctuations such as application of water or fertilizer and the inevitable seasonal shifts such as temperature, day length, and insolation.

In addition to environment-related modulations of fiber quality at the crop and whole-plant levels, significant differences in fiber properties also can be traced to variations among the shapes and maturities of fibers on a single seed and, consequently, within a given boll.

EFFECT ON FIBER LENGTH:

Comparisons of the fiber-length arrays from different regions on a single seed have revealed that markedly different patterns in fiber length can be found in the micropylar, middle, and chalazal regions of a cotton seed – at either end and around the middle . Mean fiber lengths were shortest at the micropylar (upper, pointed end of the seed) . The most mature fibers and the fibers having the largest perimeters also were found in the micropylar region of the seed. After hand ginning, the percentage of short fibers less than 0.5 inch or 12.7 mm long on a cotton seed was extremely low.

It has been reported that, in ginned and baled cotton, the short fibers with small perimeters did not originate in the micropylar region of the seed . MEasurements of fibers from micropylar and chalazal regions of seeds revealed that the location of a seed within the boll was related to the magnitude of the differences in the properties of fibers from the micropylar and chalazal regions.
Significant variations in fiber maturity also can be related to the seed position (apical, medial, or due to the variability inherent in cotton fiber, there is no absolute value for fiber length within a genotype or within a test sample . Even on a single seed, fiber lengths vary significantly because the longer fibers occur at the chalazal (cup-shaped, lower) end of the seed and the shorter fibers are found at the micropylar (pointed) end. Coefficients of fiber-length variation, which also vary significantly from sample to sample, are on the order of 40% for upland cotton.
Variations in fiber length attributable to genotype and fiber location on the seed are modulated by factors in the micro- and macroenvironment . Environmental changes occurring around the time of floral anthesis may limit fiber initiation or retard the onset of fiber elongation. Suboptimal environmental conditions during the fiber elongation phase may decrease the rate of elongation or shorten the elongation period so that the genotypic potential for fiber length is not fully realized . Further, the results of environmental stresses and the corresponding physiological responses to the growth environment may become evident at a stage in fiber development that is offset in time from the occurrence of the stressful conditions.
Fiber lengths on individual seeds can be determined while the fibers are still attached to the seed , by hand stapling or by photoelectric measurement after ginning. Traditionally, staple lengths have been measured and reported to the nearest 32nd of an inch or to the nearest millimeter. The four upland staple classes are: short (<21 mm), medium (22-25 mm), medium-long (26-28 mm) and long (29-34 mm). Pima staple length is classed as long (29-34 mm) and extra-long (>34 mm). Additionally, short fiber content is defined as the percentage of fiber less than 12.7 mm.

Cotton buyers and processors used the term staple length long before development of quantitative methods for measuring fiber properties. Consequently, staple length has never been formally defined in terms of a statistically valid length distribution.
In Fibrograph testing, fibers are randomly caught on combs, and the beard formed by the captured fibers is scanned photoelectrically from base to tip . The amount of light passing through the beard is a measure of the number of fibers that extend various distances from the combs. Data are recorded as span length (the distance spanned by a specific percentage of fibers in the test beard). Span lengths are usually reported as 2.5 and 50%. The 2.5% span length is the basis for machine settings at various stages during fiber processing.

The uniformity ratio is the ratio between the two span lengths expressed as a percentage of the longer length. The Fibrograph provides a relatively fast method for reproducibility in measuring the length and length uniformity of fiber samples. Fibrograph test data are used in research studies, in qualitative surveys such as those checking commercial staple-length classifications, and in assembling cotton bales into uniform lots.
Since 1980, USDA-AMS classing offices have relied almost entirely on high-volume instrumentation (HVI) for measuring fiber length and other fiber properties (Moore, 1996). The HVI length analyzer determines length parameters by photoelectrically scanning a test beard that is selected by a specimen loader and prepared by a comber/brusher attachment

The fibers in the test beard are assumed to be uniform in cross-section, but this is a false assumption because the cross section of each individual fiber in the beard varies significantly from tip to tip. The HVI fiber-length data are converted into the percentage of the total number of fibers present at each length value and into other length parameters, such as mean length, upper-half mean length, and length uniformity . This test method for determining cotton fiber length is considered acceptable for testing commercial shipments when the testing services use the same reference standard cotton samples.

All fiber-length methods discussed above require a minimum of 5 g of ginned fibers and were developed for rapid classing of relatively large, bulk fiber samples. For analyses of small fiber samples , fiber property measurements with an electron-optical particle-sizer, the Zellweger Uster AFIS-A2  have been found to be acceptably sensitive, rapid, and reproducible. The AFIS-A2 Length and Diameter module  generates values for mean fiber length by weight and mean fiber length by number, fiber length histograms, and values for upper quartile length, and for short-fiber contents by weight and by number (the percentages of fibers shorter than 12.7 mm). The AFIS-A2 Length and Diameter module also quantifies mean fiber diameter by number .

Although short-fiber content is not currently included in official USDA-AMS classing office reports, short-fiber content is increasingly recognized as a fiber property comparable in importance to fiber fineness, strength, and length . The importance of short-fiber content in determining fiber-processing success, yarn properties, and fabric performance has led the post-harvest sector of the U.S. cotton industry to assign top priority to minimizing short-fiber content, whatever the causes .
The perceived importance of short-fiber content to processors has led to increased demands for development and approval of a standard short-fiber content measurement that would be added to classing office HVI systems . This accepted classing office-measurement would allow inclusion of short-fiber content in the cotton valuation system. Documentation of post-ginning short-fiber content at the bale level is expected to reduce the cost of textile processing and to increase the value of the raw fiber . However, modulation of short-fiber content before harvest cannot be accomplished until the causes of increased short-fiber content are better understood.

Fiber length is primarily a genetic trait, but short-fiber content is dependent upon genotype, growing conditions, and harvesting, ginning, and processing methods. Further, little is known about the levels or sources of pre-harvest short-fiber content .

It is essential that geneticists and physiologists understand the underlying concepts and the practical limitations of the methods for measuring fiber length and short-fiber content so that the strong genetic component in fiber length can be separated from environmental components introduced by excessive temperatures and water or nutrient deficiencies. Genetic improvement of fiber length is fruitless if the responses of the new genotypes to the growth environment prevent full realization of the enhanced genetic potential or if the fibers produced by the new genotypes break more easily during harvesting or processing. The reported effects of several environmental factors on fiber length and short-fiber content, which are assumed to be primarily genotype-dependent, are discussed in the subsections that follow.
FIBER LENGTH AND TEMPERATURE:

Maximum cotton fiber lengths were reached when night temperatures were around 19 to 20 °C, depending on the genotype .  Early-stage fiber elongation was highly temperature dependent; late fiber elongation was temperature independent . Fiber length (upper-half mean length) was negatively correlated with the difference between maximum and minimum temperature.

Modifications of fiber length by growth temperatures also have been observed in planting-date studies in which the later planting dates were associated with small increases in 2.5 and 50% span lengths . If the growing season is long enough and other inhibitory factors do not interfere with fiber development, early-season delays in fiber initiation and elongation may be counteracted by an extension of the elongation period .

Variations in fiber length and the elongation period also were associated with relative heat-unit accumulations. Regression analyses showed that genotypes that produced longer fibers were more responsive to heat-unit accumulation levels than were genotypes that produced shorter fibers .  However, the earliness of the genotype was also a factor in the relationship between fiber length (and short-fiber content by weight) and accumulated heat units .

As temperature increased, the number of small motes per boll also increased. Fertilization efficiency, which was negatively correlated with small-mote frequency, also decreased. Although fiber length did not change significantly with increasing temperature, the percentage of short-fibers was lower when temperatures were higher. The apparent improvement in fiber length uniformity may be related to increased assimilate availability to the fibers because there were fewer seeds per boll.
FIBER LENGTH AND WATER:

Cotton water relationships and irrigation traditionally have been studied with respect to yield . Fiber length was not affected unless the water deficit was great enough to lower the yield to 700 kg ha-1. Fiber elongation was inhibited when the midday water potential was -2.5 to -2.8 mPa. Occurrence of moisture deficits during the early flowering period did not alter fiber length. However, when drought occurred later in the flowering period, fiber length was decreased .

Severe water deficits during the fiber elongation stage reduce fiber length ,  apparently due simply to the direct mechanical and physiological processes of cell expansion. However, water availability and the duration and timing of flowering and boll set can result in complex physiological interactions between water deficits and fiber properties including length.

FIBRE LENGTH AND LIGHT:

Changes in the growth environment also alter canopy structure and the photon flux environment within the canopy. For example, loss of leaves and bolls from unfavorable weather (wind, hail), disease, or herbivory and compensatory regrowth can greatly affect both fiber yield and quality . The amount of light within the crop canopy is an important determinant of photosynthetic activity  and, therefore, of the source-to-sink relationships that allocate photoassimilate within the canopy . Eaton and Ergle (1954) observed that reduced-light treatments increased fiber length. Shading during the first 7 d after floral anthesis resulted in a 2% increase in the 2.5% span length .

Shading (or prolonged periods of cloudy weather) and seasonal shifts in day length also modulate temperature, which modifies fiber properties, including length.

Commercial cotton genotypes are considered to be day-length neutral with respect to both flowering and fruiting . However, incorporation of day-length data in upland and pima fiber-quality models, based on accumulated heat units, increased the coefficients of determination for the length predictors from 30 to 54% for the upland model and from 44 to 57% for the pima model .

It was found that the light wavelengths reflected from red and green mulches increased fiber length, even though plants grown under those mulches received less reflected photosynthetic flux than did plants grown with white mulches. The longest fiber was harvested from plants that received the highest far red/red ratios.

FIBER LENGTH AND MINERAL NUTRITION:

Studies of the mineral nutrition of cotton and the related soil chemistry usually have emphasized increased yield and fruiting efficiency .  More recently, the effects of nutrient stress on boll shedding have been examined .  Also, several mineral-nutrition studies have been extended to include fiber quality .

Reports of fiber property trends following nutrient additions are often contradictory due to the interactive effects of genotype, climate, and soil conditions. Potassium added at the rate of 112 kg K ha-1yr-1 did not affect the 2.5% span length , when genotype was a significant factor in determining both 2.5 and 50% span lengths . Genotype was not a significant factor in Acala fiber length, but an additional 480 kg K ha-1yr-1 increased the mean fiber length .  K ha-1yr-1 increased the length uniformity ratio and increased 50%, but not 2.5% span length. Genotype and the interaction, genotype-by-environment, determined the 2.5% span length.

As mentioned above, fiber length is assumed to be genotype-dependent, but growth-environment fluctuations – both those resulting from seasonal and annual variability in weather conditions and those induced by cultural practices and inputs – modulate the range and mean of the fiber length population at the test sample, bale, and crop levels.
Quantitation of fiber length is relatively straightforward and reproducible, and fiber length (along with micronaire) is one of the most likely fiber properties to be included when cotton production research is extended beyond yield determinations. Other fiber properties are less readily quantified, and the resulting data are not so easily understood or analyzed statistically. This is particularly true of  fiber-breaking strength, which has become a crucial fiber property due to changes in spinning techniques.

FIBER STRENGTH:

The inherent breaking strength of individual cotton fibers is considered to be the most important factor in determining the strength of the yarn spun from those fibers . Recent developments in high-speed yarn spinning technology, specifically open-end rotor spinning systems, have shifted the fiber-quality requirements of the textile industry toward higher-strength fibers that can compensate for the decrease in yarn strength associated with open-end rotor spinning techniques.
Compared with conventional ring spinning, open-end rotor-spun yarn production capacity is five times greater and, consequently, more economical. Rotor-spun yarn is more even than the ring-spun, but is 15 to 20% weaker than ring-spun yarn of the same thickness. Thus, mills using open-end rotor and friction spinning have given improved fiber strength  highest priority. Length and length uniformity, followed by fiber strength and fineness, remain the most important fiber properties in determining ring-spun yarn strength.
Historically, two instruments have been used to measure fiber tensile strength, the Pressley apparatus and the Stelometer . In both of these flat-bundle methods, a bundle of fibers is combed parallel and secured between two clamps. A force to try to separate the clamps is applied and gradually increased until the fiber bundle breaks. Fiber tensile strength is calculated from the ratio of the breaking load to bundle mass. Due to the natural lack of homogeneity within a population of cotton fibers, bundle fiber selection, bundle construction and, therefore, bundle mass measurements, are subject to considerable experimental error .

Fiber strength, that is, the force required to break a fiber, varies along the length of the fiber, as does fiber fineness measured as perimeter, diameter, or cross section  Further, the inherent variability within and among cotton fibers ensures that two fiber bundles of the same weight will not contain the same number of fibers. Also, the within-sample variability guarantees that the clamps of the strength testing apparatus will not grasp the various fibers in the bundle at precisely equivalent positions along the lengths. Thus, a normalizing length-weight factor is included in bundle strength calculations.

In the textile literature, fiber strength is reported as breaking tenacity or grams of breaking load per tex, where tex is the fiber linear density in grams per kilometer . Both Pressley and stelometer breaking tenacities are reported as 1/8 in. gauge tests, the 1/8 in. (or 3.2 mm) referring to the distance between the two Pressley clamps. Flat-bundle measurements of fiber strength are considered satisfactory for acceptance testing and for research studies of the influence of genotype, environment, and processing on fiber (bundle) strength and elongation.

The relationships between fiber strength and elongation and processing success also have been examined using flat-bundle strength testing methods . However cotton fiber testing today requires that procedures be rapid, reproducible, automated, and without significant operator bias.  Consequently, the HVI systems used for length measurements in USDA-AMS classing offices are also used to measure the breaking strength of the same fiber bundles (beards) formed during length measurement.

Originally, HVI strength tests were calibrated against the 1/8-in. gauge Pressley measurement, but the bundle-strengths of reference cottons are now established by Stelometer tests that also provide bundle elongation-percent data. Fiber bundle elongation is measured directly from the displacement of the jaws during the bundle-breaking process, and the fiber bundle strength and elongation data usually are reported together (ASTM, 1994, D 4604-86). The HVI bundle-strength measurements are reported in grams-force tex-1 and can range from 30 and above (very strong) to 20 or below (very weak). In agronomic papers, fiber strengths are normally reported as kN m kg-1, where one Newton equals 9.81 kg-force .

The HVI bundle-strength and elongation-percent testing methods are satisfactory for acceptance testing and research studies when 3.0 to 3.3 g of blended fibers are available and the relative humidity of the testing room is adequately controlled. A 1% increase in relative humidity and the accompanying increase in fiber moisture content will increase the strength value by 0.2 to 0.3 g tex-1, depending on the fiber genotype and maturity.

Further, classing-office HVI measurements of fiber strength do not adequately describe the variations of fiber strength along the length of the individual fibers or within the test bundle. Thus, predictions of yarn strength based on HVI bundle-strength data can be inadequate and misleading . The problem of fiber-strength variability is being addressed by improved HVI calibration methods  and by computer simulations of bundle-break tests in which the simulations are based on large single-fiber strength databases of more than 20 000 single fiber long-elongation curves obtained with MANTIS .

Fiber Strength, Environment, and Genotype:

Reports of stelometer measurements of fiber bundle strength are relatively rare in the refereed agronomic literature. Consequently, the interactions of environment and genotype in determining fiber strength are not as well documented as the corresponding interactions that modulate fiber length. Growth environment, and genotype response to that environment, play a part in determining fiber strength and strength variability .

Early studies showed fiber strength to be significantly and positively correlated with maximum or mean growth temperature, maximum minus minimum growth temperature, and potential insolation . Increased strength was correlated with a decrease in precipitation. Minimum temperature did not affect fiber strength. All environmental variables were interrelated, and a close general association between fiber strength and environment was interpreted as indicating that fiber strength is more responsive to the growth environment than are fiber length and fineness. Other investigators reported that fiber strength was correlated with genotype only.

Square removal did not affect either fiber elongation  or fiber strength . Shading, leaf-pruning, and partial fruit removal decreased fiber strength . Selective square removal had no effect on fiber strength in bolls at the first, second, or third position on a fruiting branch . Fiber strength was slightly greater in bolls from the first 4 to 6 wk of flowering, compared with fibers from bolls produced by flowers opening during the last 2 wk of the flowering period .

In that study, fiber strength was positively correlated with heat unit accumulation during boll development, but genotype, competition among bolls, assimilatory capacity, and variations in light environment also helped determine fiber strength. Early defoliation, at 20% open bolls, increased fiber strength and length, but the yield loss due to earlier defoliation offset any potential improvement in fiber quality .

FIBER MATURITY:

Of the fiber properties reported by USDA-AMS classing offices for use by the textile industry, fiber maturity is probably the least well-defined and most misunderstood. The term, fiber maturity, used in cotton marketing and processing is not an estimate of the time elapsed between floral anthesis and fiber harvest . However, such chronological maturity can be a useful concept in studies that follow fiber development and maturation with time . On the physiological and the physical bases, fiber maturity is generally accepted to be the degree (amount) of fiber cell-wall thickening relative to the diameter or fineness of the fiber .

Classically, a mature fiber is a fiber in which two times the cell wall thickness equals or exceeds the diameter of the fiber cell lumen, the space enclosed by the fiber cell walls . However, this simple definition of fiber maturity is complicated by the fact that the cross section of a cotton fiber is never a perfect circle; the fiber diameter is primarily a genetic characteristic.

Further, both the fiber diameter and the cell-wall thickness vary significantly along the length of the fiber. Thus, attempting to differentiate, on the basis of wall thickness, between naturally thin-walled or genetically fine fibers and truly immature fibers with thin walls greatly complicates maturity comparisons among and within genotypes.

Within a single fiber sample examined by image analysis, cell-wall thickness ranged from 3.4 to 4.9 µm when lumen diameters ranged from 2.4 to 5.2 µm . Based on the cited definition of a mature fiber having a cell-wall thickness two times the lumen diameter, 90% of the 40 fibers in that sample were mature, assuming that here had been no fiber-selection bias in the measurements.

Unfortunately, none of the available methods for quantifying cell-wall thickness is sufficiently rapid and reproducible to be used by agronomists, the classing offices, or fiber processors. Fiber diameter can be quantified, but diameter data are of limited use in determining fiber maturity without estimates of the relationship between lumen width and wall thickness. Instead, processors have attempted to relate fiber fineness to processing outcome.
Estimating Fiber Fineness:

Fiber fineness has long been recognized as an important factor in yarn strength and uniformity, properties that depend largely on the average number of fibers in the yarn cross section. Spinning larger numbers of finer fibers together results in stronger, more uniform yarns than if they had been made up of fewer, thicker fibers . However, direct determinations of biological fineness in terms of fiber or lumen diameter and cell-wall thickness are precluded by the high costs in both time and labor, the noncircular cross sections of dry cotton fibers, and the high degree of variation in fiber fineness.

Advances in image analysis have improved determinations of fiber biological fineness and maturity , but fiber image analyses remain too slow and limited with respect to sample size for inclusion in the HVI-based cotton-classing process.

Originally, the textile industry adopted gravimetric fiber fineness or linear density as an indicator of the fiber-spinning properties that depend on fiber fineness and maturity combined . This gravimetric fineness testing method was discontinued in 1989, but the textile linear density unit of tex persists. Tex is measured as grams per kilometer of fiber or yarn, and fiber fineness is usually expressed as millitex or micrograms per meter . Earlier, direct measurements of fiber fineness (either biological or gravimetric) subsequently were replaced by indirect fineness measurements based on the resistance of a bundle of fibers to airflow.

The first indirect test method approved by ASTM for measurement of fiber maturity, lineardensity, and maturity index was the causticaire method. In that test, the resistance of a plug of cotton to airflow was measured before and after a cell-wall swelling treatment with an 18% (4.5 M) solution of NaOH (ASTM, 1991, D 2480-82). The ratio between the rate of airflow through an untreated and then treated fiber plug was taken as indication of the degree of fiber wall development. The airflow reading for the treated sample was squared and corrected for maturity to serve as an indirect estimate of linear density. Causticaire method results were found to be highly variable among laboratories, and the method never was recommended for acceptance testing before it was discontinued in 1992.

The arealometer was the first dual-compression airflow instrument for estimating both fiber fineness and fiber maturity from airflow rates through untreated raw cotton (ASTM, 1976, D 1449-58; Lord and Heap, 1988). The arealometer provides an indirect measurement of the specific surface area of loose cotton fibers, that is, the external area of fibers per unit volume (approximately 200-mg samples in four to five replicates). Empirical formulae were developed for calculating the approximate maturity ratio and the average perimeter, wall thickness, and weight per inch from the specific surface area data. The precision and accuracy of arealometer determinations were sensitive to variations in sample preparation, to repeated sample handling, and to previous mechanical treatment of the fibers, e.g., conditions during harvesting, blending, and opening. The arealometer was never approved for acceptance testing, and the ASTM method was withdrawn in 1977 without replacement.

The variations in biological fineness and relative maturity of cotton fibers that were described earlier cause the porous plugs used in air-compression measurements to respond differently to compression and, consequently, to airflow . The IIC-Shirley Fineness/Maturity Tester (Shirley FMT), a dual-compression instrument, was developed to compensate for this plug-variation effect (ASTM, 1994, D 3818-92). The Shirley FMT is considered suitable for research, but is not used for acceptance testing due to low precision and accuracy. Instead, micronaire has become the standard estimate of both fineness and maturity in the USDA-AMS classing offices.

Fiber Maturity and Environment:

Whatever the direct or indirect method used for estimating fiber maturity, the fiber property being as sayed remains the thickness of the cell wall. The primary cell wall and cuticle (together »0.1 µm thick) make up about 2.4% of the total wall thickness ( »4.1 µm of the cotton fiber thickness at harvest) . The rest of the fiber cell wall (»98%) is the cellulosic secondary wall, which thickens significantly as polymerized photosynthate is deposited during fiber maturation. Therefore, any environmental factor that affects photosynthetic C fixation and cellulose synthesis will also modulate cotton fiber wall thickening and, consequently, fiber physiological maturation

Fiber Maturity and Temperature and Planting Date:

The dilution, on a weight basis, of the chemically complex primary cell wall by secondary-wall cellulose has been followed with X-ray fluorescence spectroscopy. This technique determines the decrease, with time, in the relative weight ratio of the Ca associated with the pectin-rich primary wall . Growth-environment differences between the two years of the studies cited significantly altered maturation rates, which were quantified as rate of Ca weight-dilution, of both upland and pima genotypes. The rates of secondary wall deposition in both upland and pima genotypes were closely correlated with growth temperature; that is, heat-unit accumulation .

Micronaire (micronAFIS) also was found to increase linearly with time for upland and pima genotypes . The rates of micronaire increase were correlated with heat-unit accumulations . Rates of increase in fiber cross-sectional area were less linear than the corresponding micronaire-increase rates, and rates of upland and pima fiber cell-wall thickening  were linear and without significant genotypic effect .

Environmental modulation of fiber maturity (micronaire) by temperature was most often identified in planting- and flowering-date studies . The effects of planting date on micronaire, Shirley FMT fiber maturity ratio, and fiber fineness (in millitex) were highly significant in a South African study (Greef and Human, 1983). Although genotypic differences were detected among the three years of that study, delayed planting generally resulted in lower micronaire. The effect on fiber maturity of late planting was repeated in the Shirley FMT maturity ratio and fiber fineness data.

Planting date significantly modified degree of thickening, immature fiber fraction, cross-sectional area, and micronaire (micronAFIS) of four upland genotypes that also were grown in South Carolina . In general, micronaire decreased with later planting, but early planting also reduced micronaire of Deltapine 5490, a long-season genotype, in a year when temperatures were suboptimal during the early part of the season.

Harvest dates in this study also were staggered so that the length of the growing season was held constant within each year. Therefore, season-length should not have been an important factor in the relationships found between planting date and fiber maturity.
Fiber Maturity and Source-Sink Manipulation:

Variations in fiber maturity were linked with source-sink modulations related to flowering date , and seed position within the bolls . However, manipulation of source-sink relationships by early-season square (floral bud) removal had no consistently significant effect on upland cotton micronaire in one study . However, selective square removal at the first, second, and third fruiting sites along the branches increased micronaire, compared with controls from which no squares had been removed beyond natural square shedding . The increases in micronaire after selective square removals were associated with increased fiber wall thickness, but not with increased strength of elongation percent. Early-season square removal did not affect fiber perimeter or wall thickness (measured by arealometer) . Partial defruiting increased micronaire and had no consistent effect on upland fiber perimeter in bolls from August flowers.

Fiber Maturity and Water:

Generous water availability can delay fiber maturation (cellulose deposition) by stimulating competition for assimilates between early-season bolls and vegetative growth . Adequate water also can increase the maturity of fibers from mid-season flowers by supporting photosynthetic C fixation. In a year with insufficient rainfall, initiating irrigation when the first-set bolls were 20-d old increased micronaire, but irrigation initiation at first bloom had no effect on fiber maturity.  Irrigation and water-conservation effects on fiber fineness (millitex) were inconsistent between years, but both added water and mulching tended to increase fiber fineness. Aberrations in cell-wall synthesis that were correlated with drought stress have been detected and characterized by glycoconjugate analysis .

An adequate water supply during the growing season allowed maturation of more bolls at upper and outer fruiting positions, but the mote counts tended to be higher in those extra bolls and the fibers within those bolls tended to be less mature . Rainfall and the associated reduction in insolation levels during the blooming period resulted in reduced fiber maturity . Irrigation method also modified micronaire levels and distributions among fruiting sites.

Early-season drought resulted in fibers of greater maturity and higher micronaire in bolls at branch positions 1 and 2 on the lower branches of rainfed plants. However, reduced insolation and heavy rain reduced micronaire and increased immature fiber fractions in bolls from flowers that opened during the prolonged rain incident. Soil water deficit as well as excess may reduce micronaire if the water stress is severe or prolonged .
Fiber Maturity and Genetic Improvement:

Micronaire or maturity data now appear in most cotton improvement reports . In a five-parent half-diallel mating design, environment had no effect on HVI micronaire . However, a significant genotypic effect was found to be associated with differences between parents and the F1 generation and with differences among the F1 generation. The micronaire means for the parents were not significantly different, although HVI micronaire means were significantly different for the F1 generation as a group. The HVI was judged to be insufficiently sensitive for detection of the small difference in fiber maturity resulting from the crosses.
In another study, F2 hybrids had finer fibers (lower micronaire) than did the parents, but the improvements were deemed too small to be of commercial value.  Unlike the effects of environment on the genetic components of other fiber properties, variance in micronaire due to the genotype-by-environment interaction can reach levels expected for genetic variance in length and strength . Significant interactions were found between genetic additive variance and environmental variability for micronaire, strength, and span length in a study of 64 F2 hybrids .

The strong environmental components in micronaire and fiber maturity limit the usefulness of these fiber properties in studies of genotypic differences in response to growth environment. Based on micronaire, fiber maturity, cell-wall thickness, fiber perimeter, or fiber fineness data, row spacing had either no or minimal effect on okra-leaf or normal-leaf genotypes . Early planting reduced micronaire, wall-thickness, and fiber fineness of the okra-leaf genotype in one year of that study. In another study of leaf pubescence, nectaried vs. no nectaries, and leaf shape, interactions with environment were significant but of much smaller magnitude than the interactions among traits .
Micronaire means for Bt transgenic lines were higher than the micronaire means of Coker 312 and MD51ne when those genotypes were grown in Arizona . In two years out of three, micronaire means of all genotypes in this study, including the controls, exceeded 4.9; in other words, were penalty grade. This apparent undesirable environmental effect on micronaire may have been caused by a change in fiber testing methods in the one year of the three for which micronaire readings were below the upper penalty limit. Genotypic differences in bulk micronaire may either be emphasized or minimized, depending on the measurement method used .
GRADE:

In U.S. cotton classing, nonmandatory grade standards were first established in 1909, but compulsory upland grade standards were not set until 1915 . Official pima standards were first set in 1918. Grade is a composite assessment of three factors – color, leaf, and preparation . Color and trash (leaf and stem residues) can be quantified instrumentally, but traditional, manual cotton grade classification is still provided by USDA-AMS in addition to the instrumental HVI trash and color values. Thus, cotton grade reports are still made in terms of traditional color and leaf grades; for example, light spotted, tinged, strict low middling.
Preparation:

There is no approved instrumental measure of preparation – the degree of roughness/smoothness of the ginned lint. Methods of harvesting, handling, and ginning the cotton fibers produce differences in roughness that are apparent during manual inspection; but no clear correlations have been found between degree of preparation and spinning success. The frequency of tangled knots or mats of fiber (neps) may be higher in high-prep lint, and both the growth and processing environments can modulate nep frequency . However, abnormal preparation occurs in less than 0.5% of the U.S. crop during harvesting and ginning.

Trash or Leaf Grade:

Even under ideal field conditions, cotton lint becomes contaminated with leaf residues and other trash . Although most foreign matter is removed by cleaning processes during ginning, total trash extraction is impractical and can lower the quality of ginned fiber. In HVI cotton classing, a video scanner measures trash in raw cotton, and the trash data are reported in terms of the total trash area and trash particle counts (ASTM, D 4604-86, D 4605-86). Trash content data may be used for acceptance testing. In 1993, classer’s grade was split into color grade and leaf grade . Other factors being equal, cotton fibers mixed with the smallest amount of foreign matter have the highest value. Therefore, recent research efforts have been directed toward the development of a computer vision system that measures detailed trash and color attributes of raw cotton .

The term leaf includes dried, broken plant foliage, bark, and stem particles and can be divided into two general categories: large-leaf and pin or pepper trash . Pepper trash significantly lowers the value of the cotton to the manufacturer, and is more difficult and expensive to remove than the larger pieces of trash.Other trash found in ginned cotton can include stems, burs, bark, whole seeds, seed fragments, motes (underdeveloped seeds), grass, sand, oil, and dust. The growth environment obviously affects the amount of wind-borne contaminants trapped among the fibers. Environmental factors that affect pollination and seed development determine the frequency of undersized seeds and motes.

Reductions in the frequencies of motes and small-leaf trash also have been correlated with semi-smooth and super-okra leaf traits . Environment (crop year), harvest system, genotype, and second order interactions between those factors all had significant effects on leaf grade . Delayed harvest resulted in lower-grade fiber. The presence of trash particles also may affect negatively the color grade.

Fiber Color:

Raw fiber stock color measurements are used in controlling the color of manufactured gray, bleached, or dyed yarns and fabrics .  Of the three components of cotton grade, fiber color is most directly linked to growth environment. Color measurements also are correlated with overall fiber quality so that bright (reflective, high Rd), creamy-white fibers are more mature and of higher quality than the dull, gray or yellowish fibers associated with field weathering and generally lower fiber quality . Although upland cotton fibers are naturally white to creamy-white, pre-harvest exposure to weathering and microbial action can cause fibers to darken and to lose brightness.

Premature termination of fiber maturation by applications of growth regulators, frost, or drought characteristically increases the saturation of the yellow (+b) fiber-color component. Other conditions, including insect damage and foreign matter contamination, also modify fiber color.

The ultimate acceptance test for fiber color, as well as for finished yarns and fabrics, is the human eye. Therefore, instrumental color measurements must be correlated closely with visual judgment. In the HVI classing system, color is quantified as the degrees of reflectance (Rd) and yellowness (+b), two of the three tri-stimulus color scales of the Nickerson-Hunter colorimeter.

Fiber maturity has been associated with dye-uptake variability in finished yarn and fabric, but the color grades of raw fibers seldom have been linked to environmental factors or agronomic practices during production.
Other Environmental Effects on Cotton Fiber Quality:

Although not yet included in the USDA-AMS cotton fiber classing system, cotton stickiness is becoming an increasingly important problem . Two major causes of cotton stickiness are insect honeydew from whiteflies and aphids and abnormally high levels of natural plant sugars, which are often related to premature crop termination by frost or drought. Insect honeydew contamination is randomly deposited on the lint in heavy droplets and has a devastating production-halting effect on fiber processing.

The cost of clearing and cleaning processing equipment halted by sticky cotton is so high that buyers have included honeydew free clauses in purchase contracts and have refused cotton from regions known to have insect-control problems. Rapid methods for instrumental detection of honeydew are under development for use in classing offices and mills .

FIBER QUALITY OR FIBER YIELD?

Like all agricultural commodities, the value of cotton lint responds to fluctuations in the supply-and-demand forces of the marketplace.  In addition, pressure toward specific improvements in cotton fiber quality – for example, the higher fiber strength needed for today’s high-speed spinning – has been intensified as a result of technological advances in textile production and imposition of increasingly stringent quality standards for finished cotton products.

Changes in fiber-quality requirements and increases in economic competition on the domestic and international levels have resulted in fiber quality becoming a value determinant equal to fiber yield . Indeed, it is the quality, not the quantity, of fibers ginned from the cotton seeds that decides the end use and economic value of a cotton crop and, consequently, determines the profit returned to both the producers and processors.
Wide differences in cotton fiber quality and shifts in demand for particular fiber properties, based on end-use processing requirements, have resulted in the creation of a price schedule, specific to each crop year, that includes premiums and discounts for grade, staple length, micronaire, and strength . This price schedule is made possible by the development of rapid, quantitative methods for measuring those fiber properties considered most important for successful textile production . With the wide availability of fiber-quality data from HVI, predictive models for ginning, bale-mix selection, and fiber-processing success could be developed for textile mills .
Price-analysis systems based on HVI fiber-quality data also became feasible . Quantitation, predictive modeling, and statistical analyses of what had been subjective and qualitative fiber properties are now both practical and common in textile processing and marketing.

Field-production and breeding researchers, for various reasons, have failed to take full advantage of the fiber-quality quantitation methods developed for the textile industry. Most field and genetic improvement studies still focus on yield improvement while devoting little attention to fiber quality beyond obtaining bulk fiber length, strength, and micronaire averages for each treatment . Indeed, cotton crop simulation and mapping models of the effects of growth environment on cotton have been limited almost entirely to yield prediction and cultural-input management.

Plant physiological studies and textile-processing models suggest that bulk fiber-property averages at the bale, module, or crop level do not describe fiber quality with sufficient precision for use in a vertical integration of cotton production and processing. More importantly, bulk fiber-property means do not adequately and quantitatively describe the variation in the fiber populations or plant metabolic responses to environmental factors during the growing season. Such pooled or averaged descriptors cannot accurately predict how the highly variable fiber populations might perform during processing.

Meaningful descriptors of the effects of environment on cotton fiber quality await high-resolution examinations of the variabilities, induced and natural, in fiber-quality averages. Only then can the genetic and environmental sources of fiber-quality variability be quantified, predicted, and modulated to produce the high-quality cotton lint demanded by today’s textile industry and, ultimately, the consumer.

Increased understanding of the physiological responses to the environment that interactively determine cotton fiber quality is essential. Only with such knowledge can real progress be made toward producing high yields of cotton fibers that are white as snow, as strong as steel, as fine as silk, and as uniform as genotypic responses to the environment will allow.

Digg This

PROCESS PARAMETER IN BLOW ROOM


With all harvesting methods, however, the cotton seed, together with the fibres, always gets into the ginning plant where it is broken up into trash and seed-coat fragments. This means that ginned cotton is always contaminated with trash and dust particles and that an intensive cleaning is only possible in the spinning mill.

Nep content increases drastically with mechanical harvesting, ginning and subsequent cleaning process. The reduction of the trash content which is necessary for improving cotton grade and apperance unfortunately results in a higher nep content level.

The basic purpose of  Blow room is to supply

  • small fibre tufts
  • clean fibre tufts
  • homogeneously blended tufts if more than one variety of fibre is used

to carding machine  without increasing  fibre rupture, fibre neps , broken seed particles and without removing more  good fibres.

The above is achieved by the following processes in the blowroom

  1. Pre opening
  2. pre cleaning
  3. mixing or blending
  4. fine opening
  5. dedusting

CLEANING EFFICIENCY:

Cleaning efficiency of the machine is the ratio of the trash removed  by the machine to that of  total trash fed to the machine, expressed as percentage

Cleaning efficiency % =(( trash in feed % – trash in del %) x 100) / (trash in feed%)

Following are the basic parameters  to be considered in Blowroom process.

  • no of opening machines
  • type of beater
  • type of beating
  • Beater speed
  • setting between feed roller and beater
  • production rate of individual machine
  • production rate of the entire line
  • thickness of the feed web
  • density of the feed web
  • fibre micronaire
  • size of the flocks in the feed
  • type of clothing  of the beater
  • point density of clothing
  • type of grid and grid settings
  • air flow through the grid
  • position of the machine in the sequence
  • amount of trash in the material
  • type of trash in the material
  • temp and relative humidity in the blow room department

PREOPENING:

Effective preopening results in smaller tuft sizes, thus creating a large surface area for easy  and efficient removal of trash particles by the fine openers.

image

Fig:-BO-c bale opener

If MBO (Rieter) or  BO-c ( Trutzschler) type of machine is used as a first machine

  • the tuft size in the mixing should be as small as possible. Normally it should be less than 10 grams
  • since this machine does not take care of long term blending, mixing should be done properly to maintain the homogenous blending
  • the inclined lattice speed and the setting between inclined lattice and clearer roller decides the production of the machine
  • the setting between inclined lattice and clearer roller decides the quality of the tuft
  • if  the setting is too close, the tuft size will be small, but the neps in the cotton will be increased due to  repeated action of the  inclined lattice pins on cotton.
  • the clearance should be decided  first to confirm the quality, then inclined lattice speed can be decided according to the   production required
  • the setting of inclined lattice depends upon the fibre density, fibre micronaire and the tuft size fed. If smaller tuft is fed to the feeding conveyor, the fibre tufts will not be recycled many times, hence the neps will be less.
  • if the machine is with beater, it is advisable to use only disc type beater. Saw tooth and Pinned beaters should not be used in this machine, because the fibre  damage at this stage will be very high and heavier trash particles will be broken in to small pieces.
  • the beater  speed  should be around 500 to 800 rpm depending upon the rawmaterial. Coarser the fibre,  higher the speed
  • the setting between feed roller to beater should be around 4 to 7 mm
  • this machine is not meant to remove trash ,  hence the fibre loss should also be less
  • trash removal in this machine will result in breaking the seeds, which is very difficult to remove
  • It is easier to remove the bigger trash than the smaller trash, therefore enough care should be taken to avoid breaking the trash particles
  • this machine is  just to open the tufts into small sizes so that cleaning becomes easier in the next machines.
  • the fibre tuft size from this  machine should be  preferably around 100 to 200 milligrams.
  • If tuft size is  small, removing trash particles becomes easier , because of large surface area

Unifloc11

Fig:- Unifloc11

If Uniflco11(Rieter) or Blendomat BDT 019(Trutzschler) is used as a first machine

  • It helps to maintain the homogeneity of the long term blending
  • cotton is opened gently without recyling as it is done in manual bale openers
  • with the latest automatic bale opening machines,  the tuft size can be as small as 50 to 100 grams without  rupturing the fibres
  • the opening roller speed should be around 1500 to 1800 rpm.
  • the depth of penetration of the opening  should be as minimum as possible for better quality
  • It is better to use this machine with one mixing or maximum two mixing at  the same.
  • If the production per feeding machine is less than 150 kgs, then four mixings can be recommended
  • production rate of this machine depends upon the no of mixings working at the same time
  • production rate depends  upon opening roller depth, traverse speed and the fibre tuft density
  • in general , the machine parameters should be set in such a way that  maximum number of take-off points are available  per unit time.
  • with the latest machines (Rieter -Unifloc A11), around 60% of take-off points are more compared to earlier machines

PRECLEANING:

image

Fig: Uniclean B12

Precleaning should be gentle. Since removing finer trash particles is difficult , seeds and bigger trash particles should not be broken. Finer trash particles require severe treatment in Fine openers. This will lead to fibre damage and more nep generation. Therefore, precleaning should be as gentle as possible and no compromise on this. If preopening and precleaning are done  properly,  consistency in trash removal by fine openers is assured. Dust removal should be started in this machine. Enough care should be taken remove dust  in this process.

Rieter’s Uniclean B11 and Trutzschler’s Axiflow or Maxiflow  are the machines which does this work

  • the fibre treatment in this machine is very gentle because  the fibres are not gripped by the feed roller during beating.  Fibre tufts treated by the pin beater when it is carried by air medium
  • all heavy trash particles fall down before it is broken
  • cleaning efficiency of this machine is very high in the blow room line
  • Mostly all heavy seeds( full seeds) fall in this machine without any problem
  • around 50 pascal suction pressure should be maintained in the waste chamber for better cleaning efficiency
  • beater speed, air velocity through the machine, grid bar setting and gap between grid bars will affect the cleaning efficiency
  • higher the cleaning efficiency,  higher the good fibre loss, higher the nep generaion and higher the fibre rupture
  • the optimum cleaning means maximum cleaning performance, minimum loss of good fibres, a high degree of fibre preservation and minimum nep generation
  • Rieter has a unique concept called “VARIOSET”. With this machine, selective trash removal is possible. Waste  amount can be changed in a range of 1:10.

clip_image001

fig: from Rieter which shows , degree of cleaning, fibre loss, neps, fibre damage.

  • with normal machines like Monocylinder or axiflow, a lot of trials to be conducted to arrive at optimum beater speed, air velocity(fan speed), grid bar setting and grid bar gap.
  • in general the beater speed is around 750 and  minimum 50 Pascal suction pressure to be maintained in the suction chamber

BLENDING:

  • Barre or streakiness is due to uneven mixing of different cottons. Hence mixing technology is a decisive factor in spinning mill technology
  • bigger the differences of cotton parameters like fineness, color and staple length, the greater the importance of mixing
  • if the cotton has honeydew, the intensive mixing of the rawmaterial is a precondition  for an acceptable running behaviour  of the complete spinning mill

following  fig is given by trutzschler for different  mixing requirements

clip_image002

standard               standar- plus              high                   high-end

  • Trutzschler’s tandem mixing concept is an  ultimate solution, if the mixing requirement is very high. This principle guarantees a maximum homogeneous of the mix

FIG.Tandem mixing concept from TRUTZSCHLER:

FINE CLEANING:

Fine cleaning is done with different types of machines. Some fine cleaners are with single opening rollers  and some are with multiple opening rollers.

  • If single roller cleaning  machines are used, depending upon the  amount and type of trash in the cotton, the number of fine cleaning points can be either one or two.
  • If the production  rate is lower than 250 kgs and the micronaire is less than 4.0, it is advisable to use single roller cleaning machines instead of multiple roller cleaning machine.
  • Saw tooth beaters can be used, if trash particles are more and the machine is not using suction and deflector blades. i.e beater and regular grid bar arrangements
  • Normal beater speeds with saw tooth beater depends upon the production rate,  fibre micronaire and trash content
TYPE OF COTTON COTTON MICRONAIRE PROUDCTION RATE kgs/hr BEATER SPEED rpm
more trash 3.5 to 4.0 200 to 300 kgs /hr 600 to 750
less trash 3.5 to 4.0 200 to 300 kgs/hr 600 to 750
more trash 4.0 to 4.5 200 to 300 kgs 700 to 850
less trash 4.0 to 4.5 350 to 500 kgs 1000 and above
  • the number of wire points depends on the production rate and trash.
  • setting between feed roller and beater depends on the production rate and micronaire.  The setting should be around 2 to 3 mm.  Wider setting always result  in higher rawmaterial faults, if carding does not take care.
  • closer the setting between beater and mote knives, higher the waste collected. It is advisable to keep around 3 mm.
  • If it is a Trutzschler blowroom line, it is better to use  CVT1 ( single opening roller machine) if  roller ginned cotton  is used.
  • CVT3  or CVT4 machines with 3 or 4 opening rollers can be used for saw ginned cotton.
  • The cleaning points in CVT1, CVT3, CVT4 etc consists of opening roller, deflector blades, mote knives and suction hood. Trash particles released due to centrifugal forces are  separated at the mote knives and continuously taken away by the  suction. This gives better cleaning

FIG: trash removal concept in CVT cleaners:

  • suction plays a major role in these machines. If suction  is not consistent , the performance will be affected badly.  Very high suction will result in more white fibre loss and less suction will result in low cleaning efficiency.
  • The minimum recommended pressure in the waste chamber (P2) is 700 Pascal’s. It can be upto 1000 Pascal’s.
  • material suction (P1) should be around 500 Pascal’s
  • Whenever the suction pressure is changed, the deflector blade settings should be  checked
  • Deflector blade setting can not be same for all the three rollers or four rollers. The setting for deflector blades in the panel looks like this 3, 12, 30 for 1st, 2nd and 3rd deflector blades.
  • The deflector blade setting should be done in such a way that  the setting should be opened till the fibres start slipping on the deflector blade.
  • wider the deflector blade setting, higher the waste. If the setting is too wide, white fibre loss will be very high.
  • for saw ginned cottons, the above concepts helps a lot because of constant suction concentrated directly at the moteknives, ensures much removal of dust from the cotton.

DEDUSTING:

image

Fig: Dustex

Apart from opening cleaning of rawmaterial, dedusting is the very important process in blowroom process.

  • normally dedusting  starts with precleaning
  • it is always better to have a separate machine like DUSTEX of TRUTZSCHLER  for effective dedusting
  • dedusting keeps the atmospheric air clean
  • dedusting in machines like unimix , ERM of Rieter is  good
  • stationary dedusting condensers can be used for this purpose
  • in exhausts of  unimix , condensers , ERM etc, positive pressure of 100 pascal should be maintained. Exhaust fan speed and volume should be accordingly selected
  • DUSTEX should be installed before feeding to the cards, because better the fibre  opening better the dedusting
  • fine openers like ERM, CVT cleaners also help in dedusting
  • It is always better to feed the material through condenser for a feeding machine of cards.  Because condenser continuously removes the dust from a small quantity of fibres  and the material  fed to the feeding machine is opened to some extent.
  • Since material is not opened well in Unimix, the dedusting may not be very effective, even though  dedusting concept in Unimix is very good
  • for rotor spinning dedusting is very important. It is better to use a machine like DUSTEX  after the fine opener.

OTHERS:

  • setting between feed rollers is different for different types. It should be according to the standard specified by the manufacturer.  For Unimix it should be around 1 mm.
  • it is advisable to run the fans at optimum speeds.  Higher fan speeds will increase the material velocity and will create  turbulence  in the bends.This will result in curly fibres which will lead to entanglements.
  • If the feeding to cards  is not with CONTI -FEED, the efficiency of the feeding machine should be minimum 90 % and can not be more than 95%.
  • if the cards are fed by CONTI-FEED system,  the feed roller speed variation should not be more than 10%.  If the variation is more, then the variation in tuft size also will be more. Hence the quality will not be uniform
  • If two feeding machines feed to  10 cards and the no of cards can be changed according the requirement, then frequent changes will affect the tuft size which will affect the quality, if the line is fixed with CONTI-FEED.
  • if contifeed system is tuned properly and there are no machine stoppages, continuous material flow will  result in better opening and even feeding to the cards
  • If the production rate per line is high, the reserve chamber  for  the feeding machine should be big enough to avoid long term feed variations.
  • it is advisable to reduce the number of fans  in the line.
  • fan speeds, layout of machines should be selected in such a way that material choking in the pipe line, beater jamming etc will not happen.  This will lead to quality problems
  • all blowroom machines should work with maximum efficiency. The feed roller speeds  should be selected in such a way that  it works atleast 90% of the running time of the next machine.
  • blow room stoppages will always affect the sliver quality both in terms of linear density and  tuft size. Blow room stoppages  should be nil in a mill
  • heavy particles like metal particles, stones should be removed using heavy particle removers , double magnets etc, before they damage  the opening rollers and other machine parts.
  • Number of cleaning  points are decided based on  type of ginning (whether roller ginned or saw ginned), the amount of trash, and the number of trash particles and the type of trash particles.
  • machinery selection should be based on the type of cotton and production requirement. If the production requirement of a blowroom line is less than 200 kgs,  CVT-4 cleaner can not be  recommended, instead CVT-1 can be used.
  • Since blow room requires more space and power, it is better to make use of the maximum production capacity of the machines
  • material level in the storage chambers  should be full  and it should never be less than 1/4 th level.
  • grid bars should be inspected periodically, damaged grid bars  should be replaced.
  • grid bars in  the front rows can be replaced earlier
  • if the cotton is too sticky, the deposits on the machine parts  should be cleaned atleast once in a week, before it obstruct the movement of the fibre
  • fibre rupture should be checked for each opening point.  2.5 % span length should not drop by more than 3% . If the uniformity ratio drops by more than 3%, then  it  is considered that there is fibre rupture.
  • high fan speed, which will result in high velocity of air will increase neps in cotton
  • nep is increased in the blowroom process.  The increase should not be more than 100%.
  • the nep increase in each opening machine should be checked  with different beater speeds and settings, and the optimum  parameters  should be selected. But please remember that everything should be based on  yarn quality checking.  e.g. if nep increase in blow room is  more and the beater speed or feed roller setting is changed, the tuft size will become more. This may result in bad carding quality. Sometimes if the neps are slightly more and the  fibre is well opened, the neps can be removed by cards and combers and the yarn quality may be better.  Therefore all trials should be done upto yarn stage.
  • No of neps and trash particles  after different processes is given below.(an approximate value)
  • Blow room machinery lay out should be desined in such a way that there should be minimum number of bends, and there should not be sharp bends  to avoid fibre entanglements.
  • fibre travelling  surface should be smooth and clean
  • temperature should be around 30 degrees and the humidity is around 55 to 60%.

A best blowroom can be achieved by selecting the following machines:

1.RIETER UNIFLOC- A11 ( pre opening)

2.RIETER UNICLEAN B11 (  pre cleaning)

3.TRUTZSCHLER MPM 6 + MPM6 ( two mixers for blending)

4.TRUTZSCHLER CVT-1 ( for  roller ginned cotton) CVT-3 ( for saw ginned)

5.CONTAMINATION DETECTOR from either BARCO OR JOSSI

6.TRUTZSCHLER  DUSTEX-DX ( for dedusting)

7.TRUTZSCHLER CONTI-FEED and others

But enough care should be taken to synchronise the machines for better performance  , and to run the line without any electrical system breakdowns.

Digg This