DIGITAL TECHNOLOGIES IN TEXTILE ART


by,

 Havva Halaceli

Cukurova University, Faculty of Fine Arts, Department of Textile Design,
Adana, Turkey

This is a digital age, dominated by information, communication and technology-based entertainment. This age is a result of rapid visual information-sharing. In this age, technology enables video sharing, saving every moment as visual data, and it is a result of rapid visual and information sharing. Today, artists use digital technologies as a means of expressing concepts. Woven textiles are also affected by the technological advances. Textiles have been essential for people from ancient times to now, for covering and protecting themselves from heat and cold. Weaving is a fine art form and a product of labor, including Coptic textiles and European tapestries; it can also utilize the speed, selection and color options of digital technologies that result from the mechanization and technological advances in the 20th century. Computerized Jacquard looms are one of the benefits of digital technologies that enable the weaving of complex imagery by allowing individual warp threads to be lifted.

Today, working with digital cameras, scanners and jacquard looms the textile artist becomes a designer and technology becomes a medium serving the artist’s creativity. In this study, the works of textile artists will be examined in view of time, technology and communication.
Keywords: Weaving, digital technology, jacquard loom

To download full article please click following link

Digital-Technologies-in-Textile-Art

Advertisements

STANDARD COTTON FABRICS


TEXTILE TERMS & DEFINITIONS

Armure
Fibre : Cotton, silk, wool, rayon, synthetics, and blends.
Weave : Plain, twill, or rib, background often has a small design either jacquard or dobby made with warp floats on surface giving a raised effect.
Characteristics : Design is often in two colours and raised. The name was derived from original fabric which was woven with a small interlaced design of chain armor and used for military equipment during the Crusades.
Uses : a rich looking dress fabric, draperies, or upholstery.
Batiste
Fibre : Cotton, also rayon and wool.
Weave : Plain
Characteristics : Named after Jean Baptiste, a French linen weaver. Light weight, soft, semi-sheer fabric which resembles nainsook, but finer. It belongs to the lawn family; almost transparent. It is made of tightly twisted, combed yarns and mercerized finish. Sometimes it is printed or embroidered. In a heavier weight, it is used for foundation garments and linings in a plain, figured, striped, or flowered design. Considered similar to nainsook but finer and lighter in weight. Now usually made of 100% polyester distinguished by slubs in filling direction.

Birdseye
Fibre : In cotton and Linen or blend of rayon staple and cotton.
Weave : Usually dobby
Characteristics : Very soft, light weight, and absorbent. Woven with a loosely twisted filling to increase absorbency. Launders very well. No starch is applied because the absorption properties must be of the best. Material must be free from any foreign matter. It is also called “diaper cloth” and is used for that purpose as well as very good towelling. Also “novelty” birdseye effects used as summer dress fabrics.

Broadcloth
Fibre : Cotton and silk, and rayon. Very different than wool broadcloth.
Weave : Plain weave and in most cotton broadcloths made with a very fine crosswise rib weave.
Characteristics : Originally indicated a cloth woven on a wide loom. Very closely woven and in cotton, made from either carded or combed yarns. The filling is heavier and has less twist. It is finer than poplin when made with a crosswise rib and it is lustrous and soft with a good texture. Thread count ranges from high quality 144 x 6 count down to 80 x 60. Has a smooth finish. May be bleached, dyed, or printed; also is often mercerized. Wears very well. If not of a high quality or treated it wrinkles very badly. Finest quality made from Egyptain or combed pima cotton – also sea island.
Uses : Shirts, dresses, particularly the tailored type in plain colours, blouses, summer wear of all kinds.

Brocade
Fibre : Cotton brocade often has the ground of cotton and the pattern of rayon and silk. Pattern is in low relief.
Weave : Jacquard and dobby
Characteristics : Rich, heavy, elaborate design effect. Sometimes with coloured or metallic threads making the design usually against a satin weave background. This makes the figures stand out. The figures in brocade are rather loose, while in damask the figure threads are actually bound into the material. The pattern may be satin on a twill ground or twill on a satin ground. Often reversible. The motifs may be of flowers, foliage, Scrollwork, Pastoral scenes, or other designs. The price range is wide. Generally reputed to have been developed from the latin name “brocade” which means to figure.
Uses : All types of after 5 wear, church vestments, interior furnishings, and state robes.

Buckram
Fibre : Cotton, some in linen, synthetics.
Weave : Plain
Characteristics : Cheap, low-textured, loose weave, very heavily sized and stiff. Also, 2 fabrics are glued together; one is open weave and the other much finer. Some is also made in linen in a single fabric. Also called crinoline book muslin or book binding. Name from Bokhara in Southern Russia, where it was first made.
Uses : Used for interlinings and all kinds of stiffening in clothes, book binding, and for millinery (because it can be moistened and shaped). Used to give stiffness to leather garments not as stiff and often coloured is called “tarlatan”. Softens with heat. Can be shaped while warm.

Calico
Fibre : Cotton
Weave : Plain – usually a low count.
Characteristics : Originated in Calcutta, India, and is one of the oldest cottons. Rather coarse and light in weight. Pattern is printed on one side by discharge or resist printing. It is not always fast in colours. Sized for crispness but washes out and requires starch each time. Designs are often geometric in shape, but originally elaborate designs of birds, trees, and flowers. Inexpensive. Similar to percale. Very little on the market today, but the designs are still in use on other fabrics and sold as “calico print.”
Uses : Housedresses, aprons, patchwork quilts.

Cambric
Fibre : Cotton, also linen.
Weave : Plain
Characteristics : Soft, closely woven, light. Either bleached or piece dyed. Highly mercerized, lint free. Calendered on the right side with a slight gloss. Lower qualities have a smooth bright finish. Similar to batiste but is stiffer and fewer slubs. Launders very well. Has good body, sews and finishes well. Originally made in Cambria, France of linen and used for Church embroidery and table linens.
Uses : Handkerchiefs, underwear, slips, nightgowns, children’s dresses, aprons, shirts and blouses.

Candlewick Fabric
Fibre : Cotton – also wool.
Weave : Plain
Characteristics : An unbleached muslin bed sheeting (also called Kraft muslin) used as a base fabric on which a chenille effect is formed by application of candlewick (heavy plied yarn) loops, which are then cut to give the fuzzy effect and cut yarn appearance of true chenille yarn. May be uncut also. (True chenille is a cotton, wool, silk, or rayon yarn which has a pile protruding all around at slight angles and stimulates a caterpillar. Chenille is the French word for caterpillar.)
Uses : Bedspreads, drapes, housecoats, beach wear.

Canton Flannel
Fibre : Cotton
Weave : Four harness warp-faced twill weave.
Characteristics : The filling yarn is a very loosely twisted and soft and later brushed to produced a soft nap on the back, the warp is medium in size. The face is a twill. Heavy, warm, strong and absorbent. Named for Canton, China where it was first made. Comes bleached, unbleached, dyed, and some is printed.
Uses : Interlinings, sleeping garments, linings, coverings, work gloves.

Chambray

Fibre : Cotton
Weave : Plain weave or dobby designs on a plain-weave ground.
Characteristics : Made with a dyed warp and a white or unbleached filling. Both carded and combed yarns used. Has a white selvedge. Some woven with alternating white and coloured warp. “Faded” look. Has very soft colouring. Some made with stripes, checks or embroidered. Smooth, strong, closely woven, soft and has a slight lustre. Wears very well, easy to sew, and launders well. If not crease resistant, it wrinkles easily. Originated in Cobrai, France it was first made for sunbonnets.
Uses : Children’s wear, dresses, shirts and blouses, aprons, all kinds of sportswear.

Chamois Cloth
Fibre : Cotton
Weave : Plain
Characteristics : Fabric is napped, sheared, and dyed to simulate chamois leather. It is stiffer than kasha and thicker, softer and more durable than flannelette. Must be designated as “cotton chamoise-colour cloth”.
Uses : Dusters, interlining, storage bags for articles to prevent scratching.

Chamoisette
Fibre : Cotton, also rayon and nylon.
Weave : Knitted, double knit construction.
Characteristics : A fine, firmly knit fabric. Has a vary short soft nap. Wears well. Nylon chamoisette is more often called “glove silk”.
Uses : Gloves.

Cheesecloth
Fibre : Cotton
Weave : Plain
Characteristics : Originally used as a wrapping material for pressing cheese. Loosely woven, thin, light in weight, open in construction, and soft. Carded yarns are always used. It is also called gauze weave. When woven in 36″ widths it is called tobacco cloth, When an applied finish is added, it is called buckram, crinoline, or bunting.
Uses : In the grey cloth, it is used for covering tobacco plants, tea bags and wiping cloths.
Finished cloth is used for curtains, bandages, dust cloths, cheap bunting, hat lining, surgical gauze, fly nets, food wrapping, e.g. meat and cheese, costumes and basket tops.

Chenille Fabric
Fibre : Cotton and any of the main textile fibres.
Weave : Mostly plain weave.
Characteristics : Warp yarn of any major textile fibre. Filling of chenille yarns (Has a pile protruding all around at right angles). The word is French for caterpillar and fabric looks hairy. Do not confuse with tufted effects obtained without the use of true Chenille filling.
Uses : Millinery, rugs, decorative fabrics, trimmings, upholstery.

Chinchilla
Fibre : Cotton or wool, and some manmade and synthetics.
Weave : Sateen or twill construction with extra fillings for long floats.
Characteristics : Does not resemble true chinchillas fur. Has small nubs on the surface of the fabric which are made by the chincilla machine. It attacks the face and causes the long floats to be worked into nubs and balls. Cotton warp is often used because it cannot show from either side. Made in medium and heavy weights. Very warm and cozy fabrics. Takes its name from Chinchilla Spain where it was invented.
Uses : In cotton, used for baby’s blankets and bunting bags.

Chino
Fibre : Cotton
Weave : Twill (left hand)
Characteristics : Combined two-ply warp and filling. Has a sheen that remains. Fabric was purchased in China (thus the name) by the U.S. Army for uniforms. Originally used for army cloth in England many years before and dyed olive-drab. Fabric is mercerized and sanforized. Washs and wears extremely well with a minimum of care.
Uses : Army uniforms, summer suits and dresses, sportswear.

Chintz
Fibre : Cotton
Weave : Plain
Characteristics : Has bright gay figures, large flower designs, birds and other designs. Also comes in plain colours. Several types of glaze. The wax and starch glaze produced by friction or glazing calendars will wash out. The resin glaze finish will not wash out and withstand drycleaning. Also comes semi-glazed. Unglazed chintz is called cretonne. Named from the Indian word “Chint” meaning ” broad, gaudily printed fabric”.
Uses : Draperies, slipcovers, dresses, sportwear.

Corduroy
Fibre : Cotton, rayon, and other textile fibres.
Weave : Filling Pile with both plain and twill back.
Characteristics : Made with an extra filling yarn. In the velvet family of fabrics. Has narrow medium and wide wales, also thick n’thin or checkerboard patterns. Wales have different widths and depths. Has to be cut all one way with pile running up. Most of it is washable and wears very well. Has a soft lustre.
Uses : Children’s clothes of all kinds, dresses, jackets, skirts, suits, slacks, sportswear, men’s trousers, jackets, bedspreads, draperies, and upholstery.

Crepe
Fibre : Worsted cotton, wool, silk, man-made synthetics.
Weave : Mostly plain, but various weaves.
Characteristics : Has a crinkled, puckered surface or soft mossy finish. Comes in different weights and degrees of sheerness. Dull with a harch dry feel. Woolen crepes are softer than worsted. If it is fine, it drapes well. Has very good wearing qualities. Has a very slimming effect.
Uses : Depending on weight, it is used for dresses of all types, including long dinner dresses, suits, and coats.

Crettone
Fibre : Cotton, linen, rayon
Weave : Plain or twill.
Characteristics : Finished in widths from 30 to 50 inches. Quality and price vary a great deal. The warp counts are finer than the filling counts which are spun rather loose. Strong substantial and gives good wear. Printed cretonne often has very bright colours and patterns. The fabric has no lustre (when glazed, it is called chintz). Some are warp printed and if they are, they are usually completely reversible. Designs run from the conservative to very wild and often completely cover the surface.
Uses : Bedspreads, chairs, draperies, pillows, slipcovers, coverings of all kinds, beach wear, sportwear.

Denim
Fibre : Cotton
Weave : Twill – right hand – may be L2/1 or L3/1.
Characteristics : Name derived from French “serge de Nimes”. Originally had dark blue, brown or dark grey warp with a white or gray filling giving a mottled look and used only for work clothes. Now woven in bright and pastel colours with stripes as well as plain. Long wearing, it resists snags and tears, Comes in heavy and lighter weights.
Uses : Work clothes, overalls, caps, uniforms, bedspreads, slipcovers, draperies, upholstery, sportswear, of all kinds, dresses and has even been used for evening wear.

Dimity
Fibre : Cotton
Weave : Plain weave with a crosswise or lengthwise spaced rib or crossbar effect.
Characteristics : A thin sheer with corded spaced stripes that could be single, double or triple grouping. Made of combed yarn and is 36” wide. Has a crisp texture which remains fairly well after washing. Resembles lawn in the white state. It is easy to sew and manipulate and launders well. Creases unless creaseresistant. May be bleached, dyed, or printed and often printed with a small rosebud design. It is mercerized and has a soft lustre.
Uses : Children’s dresses, women’s dresses, and blouses, infant’s wear, collar and cuff sets, basinettes, bedspreads, curtains, underwear. Has a very young look.

Domett Flannel
Fibre : Cotton
Weave : Plain and twill
Characteristics : Also spelled domet. Generally made in white. Has a longer nap than on flannelette. Soft filling yarns of medium or light weight are used to obtain the nap. The term domett is interchangeable with “outing flannel” but it is only made in a plain weave. Both are soft and fleecy and won’t irritate the skin. Any sizing or starching must be removed before using. Outing flannel is also piece-dyed and some printed and produced in a spun rayon also.
Uses : Mostly used for infants wear, interlinings, polished cloths.

Pique
Fibre: Cotton, rayon, synthetics.
Weave: Lengthwise rib, English crosswise rib or cord weave.
Characteristics: Originally was a crosswise rib but now mostly a lenghtwise rib and the same as bedford cord. Ribs are often filled to give a more pronounced wale (cord weave). Comes in medium to heavy weights. It is generally made of combed face yarns and carded stuffer yarns. It is durable and launders well. Wrinkles badly unless given a wrinkle-free finish. Various prices. Also comes in different patterns besides wales. The small figured motifs are called cloque. Some of the patterns are birdseye (small diamond), waffle (small squares). honeycomb (like the design on honeycomb honey). When the fabric begins to wear out it wears at the corded areas first.
Uses : Trims, collars, cuffs, millinery, infants wear, particularly coats, and bonnets, women’s and children’s summer dresses, skirts and blouses, shirts, playclothes, and evening gowns.

Plisse
Fibre : Cotton, rayon, and others.
Weave : Plain
Characteristics : Could be made from any fine material, e.g. organdy, lawn, etc. Treated with caustic soda solution which shrinks parts of the goods either all
over or in stripes giving a blistered effect. Similar to seersucker in appearance. This crinkle may or may not be removed after washing. This depends on the quality of the fabric. It does not need to be ironed, but if a double thickness, such as a hem needs a little, it should be done after the fabric is thoroughly dry.
Uses : Sleepwear, housecoats, dresses, blouses for women and children, curtains, bedspreads, and bassinettes. Often it is called wrinkle crepe and may be made with a wax/shrink process (the waxed parts remain free of shrinkage and cause the ripples).

Point d’esprit
Fibre : Cotton – some in silk.
Weave : Leno, gauze, knotted, or mesh.
Characteristics : First made in France in 1834. Dull surfaced net with various sized holes. Has white or coloured dots individually spaced or in groups.
Uses : Curtains, bassinettes, evening gowns

Poplin
Fibre : Cotton, wool, and other textile fibres.
Weave : Crosswise rib. The filling is cylindrical. Two or three times as many warp as weft per inch.
Characteristics : Has a more pronounced filling effect than broadcloth. It is mercerized and has quite a high lustre. It may be bleached, or dyed (usually vat dyes are used) or printed. Heavy poplin is given a water-repellent finish for outdoor use. Originally made with silk warp and a heavier wool filling. Some also mildew-proof, fire-retardant, and some given a suede finish. American cotton broadcloth shirting is known as poplin in Great Britain.
Uses : Sportswear of all kinds, shirts, boy’s suits, uniforms, draperies, blouses, dresses.

Sailcloth
Fibre : Cotton, linen, nylon.
Weave : Plain, some made with a crosswise rib.
Characteristics : A strong canvas or duck. The weights vary, but most often the count is around 148×60. Able to withstand the elements (rain, wind and snow). Sailcloth for clothing is sold frequently and is much lighter weight than used for sails.
Uses : Sails, awnings, and all kinds of sportswear for men, women, and children.

Sateen
Fibre : Cotton, some also made in rayon.
Weave : Sateen, 5-harness, filling-face weave.
Characteristics : Lustrous and smooth with the sheen in a filling direction. Carded or combed yarns are used. Better qualities are mercerized to give a higher sheen. Some are only calendered to produce the sheen but this disappears with washing and is not considered genuine sateen. May be bleached, dyed, or printed. Difficult to make good bound buttonholes on it as it has a tendency to slip at the seams.
Uses : Dresses, sportswear, blouses, robes, pyjamas, linings for draperies, bedspreads, slip covers.

Seersucker
Fibre : Cotton, rayon, synthetics.
Weave : Plain, slack tension weave.
Characteristics : Term derived from the Persian “shirushaker”, a kind of cloth, literally “milk and sugar”. Crepe-stripe effect. Coloured stripes are often used. Dull surface. Comes in medium to heavy weights. the woven crinkle is produced by alternating slack and tight yarns in the warp. This is permanent. Some may be produced by pressing or chemicals, which is not likely to be permanent – called plisse. Durable, gives good service and wear. May be laundered without ironing. Can be bleached, yarn dyed, or printed. Some comes in a check effect.
Uses : Summer suits for men, women, and children, coats, uniforms, trims, nightwear, all kinds of sportswear, dresses, blouses, children’s wear of all kinds, curtains, bedspreads, slipcovers.

Shantung
Fibre : Cotton, silk, rayon, synthetics.
Weave : Plain.
Characteristics : It is a raw silk made from Tussah silk or silk waste, depending on the quality. It is quite similar to pongee, but has a more irregular surface, heavier, and rougher. Most of the slubs are in the filling direction. Wrinkles quite a bit. Underlining helps to prevent this as well as slipping at the seams. Do not fit too tightly, if long wear is expected. Comes in various weights, colours and also printed.
Uses : Dresses, suits, and coats.

Terry cloth
Fibre : Cotton and some linen.
Weave : Pile, also jacquard and dobby combined with pile.
Characteristics : Either all over loops on both sides of the fabric or patterned loops on both sides. Formed with an extra warp yarn. long wearing, easy to launder and requires no ironing. May be bleached, dyed, or printed. Better qualities have a close, firm, underweave, with very close loops. Very absorbent, and the longer the loop, the greater the absorbency. When the pile is only on one side, it is called “Turkish towelling.”
Uses : Towels, beachwear, bathrobes, all kinds of sportswear, children’s wear, slip covers, and draperies.

Tiking
Fibre : Cotton
Weave : Usually twill (L2/1 or L3/1), some jacquard, satin, and dobby.
Characteristics : Very tightly woven with more warp than filling yarns. Very sturdy and strong, smooth and lustrous. Usually has white and coloured stripes, but some patterned (floral). Can be made water-repellent, germ resistant, and feather-proof.
Uses : Pillow covers, mattress coverings, upholstering and some sportswear. `Bohemian ticking” has a plain weave, a very high texture, and is featherproof. Lighter weight than regular ticking. Patterned with narrow coloured striped on a white background or may have a chambray effect by using a white or unbleached warp with a blue or red filling.

CARPET CONSTRUCTION


It is important to understand carpet construction in order to apply the variables that affect performance of a specific installation. Tufted carpet consists of the following components: the face yarn, which can be cut pile, loop pile, or a combination of cut and loop pile; primary backing fabric; a bonding compound, usually SB latex, but may be polyurethane, PVC, or fabric; and (often) a secondary backing fabric.

The development of the broadloom tufting machine and the introduction of synthetic carpet yarns in the early 1950s transformed the American carpet industry from low-volume production of woven luxury products to mass production of high quality and comfortable, yet popularly priced, goods. The explosive growth of carpet sales in the United States in the ensuing years paralleled the continual development of tufting technology, the proliferation of high-speed tufting machines, and the development of synthetic carpet fibers and alternative backing systems. As a result, today’s carpet is both better and less expensive.

Figures 1.1 and 1.2 illustrate how these elements are combined to form carpet.

image

The primary carpet fabric construction methods include tufting, weaving, knitting, needle punching, and bonding.

TUFTING

Over 90% of carpet produced is tufted, the most prevalent carpet construction method. Tufting machines are similar to giant sewing machines, using hundreds of threaded needles in a row across the width of the machine. Today’s machines are increasingly complex and sophisticated, providing a wide variety of styles and constructions.

The creel, located in front of the tufter, may be racks of many yarn cones or multiple large spools, referred to as beams, and containing many individual strands of yarn. From the creel, the yarns are passed
overhead through guide tubes to puller rolls. The speed of the puller rolls controls the amount of yarn supplied to the tufter and, along with other factors, determines the carpet’s pile height.

The eyed needles, which number up to 2,000 for very fine gauge machines, insert the yarn into a primary backing fabric supplied from a roll of  material located in front of the machine. Spiked rolls on the front and back of the tufting machines feed the backing through the machine.

Below the needle plate are loopers, devices shaped like inverted hockey sticks, timed with the needles to catch the yarn and hold it to form loops. If a cut pile is called for, a looper and knife combination is used to cut the loops. For cut-loop combinations, a special looper and conventional cutting knife are used.

image

Tufting has reached a high degree of specialization, utilizing a variety of patterning devices, many of which are computer-controlled. Stepping, or zigzag moving, needle bars, and individually controlled needles greatly expand patterning possibilities. Such patterned carpet is frequently referred to as a graphics pattern. Other advanced tufting techniques are loop over loop and loop over cut (LOC) machines

After completion of tufting, the unbacked tufted carpet is dyed (if precolored yarns were not used) then followed by a finishing step to add an adhesive compound backing and, usually, a secondary backing material.

Tufted carpet styles range from loop, cut pile, and combinations of both in solids, tweeds, stripes, and patterns from the most simple to the exotic and complex. The designer has an endless variety of carpet choices due to advances in tufting–technology, coloration options, and finishing techniques.

WEAVING

While there are several methods of weaving and several types of looms, there are basic similarities to all. In general, woven carpet is formed by the interweaving of warp and weft yarns. The warp yarns are wound from parallel or heavy beams that unwind slowly as weaving progresses. Two main types of warp yarns form the carpet back: chain and stuffer. Chain yarns provide structure and stability while stuffer warp yarns increase bulk and stiffness of the fabric. The face yarns of woven carpet are also pre-dyed warp yarns that are normally fed into the loom from a yarn creel.

image

The warp yarns run through a heddle, a series of vertical wires, each having an eye in the center through which the yarn is threaded. The heddle controls the action of the warp yarns. The wires are  mounted on two frames that rise alternately to form a space or shed.

The face of the carpet is formed with warp yarns moving into the loom from yarn creels. These pile yarns are looped over wires that lie at right angles to the warp yarns that are then bound with a yarn known as the weft, which is shot through the shed with a shuttle or other means. When a cut pile carpet is desired, wires with a knife blade at one end are used.

KNITTING

A carpet knitting machine, known as a double needle bar knitter, has a row arrangement of hundreds of latch needles that move in an up-and-down motion in conjunction with yarn guide bars. Yarn guide tubes are attached to a guide bar that passes the yarns between and about the needles, thus laying down the pile face yarns and weft backing yarns. Separate sets of guide bars control each of the yarns–knitting, backing and face yarns. Additional bars may be used for color and design variety.

Knitted carpet is used mainly for commercial loop construction and is sometimes referred to as woven interlock. It often is used in school applications.

NEEDLEPUNCHING

In the needle punching process, several webs of staple fibers are superimposed to create a thick, loose batting. The batting is then tacked, or lightly needled, to reduce its thickness before it is fed into the  machine. As the batting is fed into the machine, it passes between two plates. The stationary lower plate contains many holes, while the upper plate, or headboard, contains several rows of barbed needles. The batting passes between the plates and the headboard moves up and down, passing the barbed needles through the fibers. As the needles pass through the fibers, they carry fiber ends from the top of the batting to the bottom, and when they are withdrawn, vice versa. The needles are passed repeatedly through the batting as it moves through the machine to form the carpet.

Needlepunch carpet is used mainly for outdoor applications and may include uses like entrance mats, marine uses, wall coverings and automotive applications. Surface patterning creates a large number of design possibilities.

BONDING

Fusion bonded carpet is produced by implanting the pile yarn directly into a liquid polymer, usually PVC, which fastens it directly to the backing. This results in very little buried yarn compared to other processes. The yarns can be closely packed, producing very high densities suitable for high-use areas. This process is used most frequently to produce carpet to be cut into carpet tiles or modules. Fusion bonded carpet may be loop construction, but most often is a cut pile product, made by a two-back process, slicing apart two simultaneously made carpets that are mirror images.

Fabric defects and problems of machine regulation


The finished fabrics can show various kind of faults which can be ascribed to the operations which follow one another till the realization of the finished fabric. The most common defects which appear in more or less extended areas of the fabric are:

• knot;
• crease, mark;
• abrasion or hole;
• tear;
• stain;
• dirt, contamination;
• moirè = presence of vawy areas in periodical sequence, reflecting the light and due to a different compression of weft or also of warp.
• grain = presence of designs with streaked and sinuous lines.

The most common fabric defects due to warp are:
Faulty thread = a thread or pieces of thread which are coarse, fine, irregular owing to higher or lower twist or to other twist direction, of different colour, with two or three ends;
– missing thread = a thread or pieces of ground or effect threads which are missing in the fabric weave;
– tight/slack thread = a thread or pieces of thread which are tighter or slacker than the other pieces/threads;
– incorrectly woven yarn = a thread which in some parts only of the fabric is not interlaced in the standard way
– broken warp = small pieces of cut or missing warp thread
– reversed thread = crossed, exchanged threads or thread pieces;
– warp stripes = one or more faulty threads giving rise to zones of different aspect; it can be due to scraping or rubbing from members of production machines or to inaccurate reeding;

The most common fabric defects due to weft are:
• Faulty weft = a weft or pieces of weft which are coarse, fine, irregular (slubs, etc.), twisted, reversed, with different twist, of different colour, double weft;
• missing weft = weft or pieces of weft missing in the fabric weave;
• tight/slack weft = a weft or pieces of weft which are tighter or slacker than the other pieces/wefts;
• incorrectly woven weft = a weft which in some parts only of the fabric is not interlaced in the standard way;
• cut wefts = short pieces of cut wefts;
• weft bars (starting marks) = visual light/dark effect in weft direction due to higher or lower weft density caused by the weaving machine.

The quality control on the fabrics is carried out on a special inspecting machine, equipped with special lamps which facilitate the defect detection by the operator, marks them with labels of different colours according to the fault type and importance.

Depending on the number of faults and on their importance, the fabric pieces can be classified as standard (in respect to quality specifications) or can be subjected to a more or less serious degrading with consequent compensations to the customers or with the sale of the fabric at a reduced price.

Various defects can arise during the stages of weaving preparation (warping, sizing, threading-in into the heddles and into the reed) as well as during weaving itself. It is therefore important to regulate accurately the various devices of the weaving machine and to understand how to act in case of anomalous operating situations which create defects and/or reduce weaving efficiency.Let us see in the following which practical effects some of the most common regulations might have.

Warp tension

The warp must be under tension to permit weft insertion and fabric construction. The increase in the tension avoids stressing heavily the yarns during the reed beat-up, reduces their sticking together during shedding especially when weaving yarns with poor elasticity and with low airiness, facilitates the separation of the interlaced or glued yarns and the passage of the knots through the reed. The tension might however increase the tensile stress on the warp threads and consequently lead to a higher number of broken ends. On the other hand the reduction in the tension results into a lower yarn breakage rate and also into a lower friction of the threads against the heald frames. In certain cases it could cause however difficulties in obtaining the desired weft density owing to the less effective stroke.

Position of the back rest roller
• horizontal regulation: it is suggested to move the back rest roller away from the harness to reduce the elongation of the single threads, particularly when using yarn with low elastic recovery or when weaving with a high number of heald frames. The back rest roller can be however brought near to the harness when you want to increase the elongation of the single yarns with the purpose of reducing the sticking of the threads together; at the same time an adequate distance from the warp stop motion should be maintained in order to favour the lining up of the threads with the respective drop wires and to facilitate the repair operations;

• vertical regulation: with back rest roller positioned in the centre to get a symmetric shed and thus to reduce the stress on the threads during shed opening (normal condition); with back rest roller moved upwards to loosen the threads of the upper shed and to favour the insertion of the wefts in very dense fabrics; with back rest roller moved downwards to reduce the stress on there lease springs of the heald frames in the Jacquard machines or when weaving with the warp effect of greatly unbalanced weaves turned upside down;

• locking position: the locking of the back rest roller is carried out when stiff warp yarns are used in order to reduce the oscillations, or when snarls arise owing to the twist of the beam threads;
• free rotation: the back rest roller rotates when delicate warps, elastic warps or warps with high elongation are used or when only few heald frames are in motion (limited oscillations).

Warp stop motion
The selection of the type of drop wire, of the weight and density of each contact rail must be made with great care on basis of the yarn count and composition, following the indication of the manufacturers. The responsiveness of the warp stop motion can be increased by reducing the drop height of the drop wires towards the contact rail, in case of threads which are prone to getentangled or which show very difference counts or twists. This responsiveness can be reduced in case of loose threads or false stops.

Shedding
The centring of the shed towards the weft insertion tool used plays an important role, to avoid abrasion risks, weave defects, thread cutting, selvedge trimming and other faults. An increase in the shed dimension reduces the possibility of mistakes and thread breakage caused by their sticking together, whereas a decrease in the shed dimension reduces the stress on the threads.Sometimes it can be necessary to offset the heald frames to favour the separation of the threads or to avoid placing threads with too different tension close to each other.

Timing of the dobby
It might be convenient to advance the shed closing time of the dobby when using very dense and hairy warps, to improve the clearness of the shed; this way the possibility of producing loose wefts after the opening of the pulling rapier is reduced and the possibility of blocking the wefts during the stroke is increased. The closing of the shed is on the contrary delayed to obtain a better extension of the weft and to facilitate its insertion.

Take-up coatings
The take-up coating plays an important role to prevent fabric gliding during its taking-down,which would cause unavoidably streakiness. In general the friction coefficient should grow with the increasing of the warp tension. The maximum adhesion of the fabric is obtained using emery cloth coatings, but sometimes this kind of coating can result in abrasion spots on delicate fabrics.In these cases surfaces coated with rough or smooth rubber, or with resin are used.

Anti-streakiness cycles
The modern machines equipped with electrically connected electronic warp let-off and cloth takeup motions which are managed by the microprocessor system of the controller permit to carry out maintenance cycles aimed at avoiding the formation of stripes (continuous stripes and loom starting marks) after machine stops, while taking into account, at loom re-starting, the different reed beat-up speed in respect to the running speed, the plastic deformations of the threads and of the fabric, as well as possible displacements of the fabric formation edge during the stop. To avoid different initial beat-up conditions, it is also possible to carry out idle strokes.

Other interventions
Many other regulations are possible: on weft feeding and braking mechanisms, on selvedge formation devices, on temples, on weft cutting, on insertion mechanisms used. The fact of being in a position to produce the best suited regulations and corrections contributes in a decisive way to he improvement of the fabric quality and of the weaving efficiency.

Simple Spot Designs


Designs in which the ornament consists chiefly of small, detached spots or figures are employed and where elaborate figure ornamentation is not desired. Spotted effects are produced in cloths in different ways—e.g., by employing fancy threads in which spots of contrasting color occur at intervals, and by introducing extra warp or extra weft threads which are brought to the surface where the spots are formed. In the following, however, only the system of producing spot figures is considered in which the spots are formed by floating the ordinary weft or warp threads on the surface of the cloth in an order that is in contrast with the interlacing in the ground. The figures show most prominently when the warp and weft threads are in different colors or materials; but if the two series of threads are alike the difference in the reflection of the light from the different weave surface is sufficient to render the figures clearly visible. Other things being equal, the weft usually forms brighter and clearer spots than the warp: (1) because it is more lustrous and bulky
on account of containing less twist; and (2) because cloths generally contract more in width than in length, the weft thus being brought more prominently to the surface than the warp.

Methods of drafting spot figures

Simple spot figures are readily designed directly upon point paper, and the outline may be first lightly indicated in pencil, as represented at A. The squares are then filled in along the outline, as indicated at B, and this is followed by painting the figure solid, as shown at C. If the ground weave is plain, in painting the outline, the moves should be in odd number of squares, as shown at D, in order that the edge of the figure will fit correctly with the plain marks. If only short floats are required in the figure a simple weave (e.g., a twill or sateen) may be inserted upon it in a color of paint that is in contrast with the first color as represented by the blanks E. On the other hand, the binding marks may be inserted in such a manner as to give a special appearance to the figure as indicated at F. The prominence of the figure is usually reduced about in proportion to the firmness of the binding weave, but, as a rule, a float longer than 0.5 cm should not be made or the structure will be too loose.

image imageimage

imageimageimage

Spot figures which are rather intricate may be sketched upon plain paper and then be drafted upon design paper in the manner illustrated at I, J, and K.

imageimage

Distribution of spot figures

It is only in special cases, when a spot is arranged to fit in the cell of a colored check, that a figure is used only once in the repeat of a design. Generally, two or more figures are contained in the repeat, and it is necessary for them to be placed at a suitable distance apart, and evenly distributed over the repeat area. The repeat must be at least so large that
the figures do not encroach upon each other, and the factors which influence the number of ends and picks in a repeat are as follows:

(a) The size and shape of the figure;

(b) the number of figures;

(c) the amount of ground space required;

(d) the number of threads in the repeat of the ground weave. Even distribution of the figures is secured by employing a simple weave—such as plain and certain sateens—as the basis of the arrangement.

image

A method of distributing figures upon design paper, that will be found applicable to any shape of figure, is illustrated, which shows the spot L arranged in the order of the 5-sateen base given at M upon 30 ends and 40 picks. As shown at N, the figure is first painted in near the bottom left-hand corner of the sheet of point paper, and the square which is nearest its centre is marked, as indicated by the cross on the fifth end and sixth pick. From the marked end and pick the repeat is divided in both directions into as many parts as figures to be used—in this case five; and lines are lightly ruled in pencil on the spaces, as represented by the shaded lines in N. It will be seen that the vertical lines occur at intervals of six ends and the horizontal lines at intervals of eight picks to correspond with the division into five parts each way of the repeat of 30 ends and 40 picks. Then, as indicated by the rosses in N, the squares where the divisional lines intersect are marked in the order of the sateen base. The final stage in designing the figures consists of copying the first spot square by square in the same relative position to each centre mark, as shown at O.

imageimage

In the plain weave basis the figures are arranged in alternate order, as shown in the example given and the corresponding design indicated at A. In this case, as there are two figures in the repeat, the number of ends and picks in he design are divided into two parts from the eighth end and pick which form the centre of the first spot.

Digg This

Bedford-cord


PLAIN FACE BEDFORDCORD

Bedford cord is the class of weaves produces the longitudinal warp lines in the cloth with fine sunken lines between.

The Bedford cord named after the town of Bedford in England. It is a heavy fabric with a length wise ribbed weave that reassembled corduroy.

METHOD OF CONSTRUCTION

· At interval pair of ends work in perfectly plain order with the picks, therefore these lifts are first indicated

clip_image002

· The number of ends between the pair of plain end being varied according to the width of cord required.

· The next stage is consist of inserting marks (which indicating warp float) on the first and second picks of alternate cords and on the third and fourth picks of the other cords.

clip_image004

· The object of arranging the marks of the cord ends in alternate order is chiefly to equalize the lift of the ends.

· The designs are completed by inserting plain weave on the cord ends, which join with the plain working of the pair of ends.

clip_image006

STRUCTURE DETAIL

· The cord ends float over three picks and under one while the picks float in pairs on the back of one cord and interweave in plain order in the next cord.

 

DRAFTING AND DENTING

· The usual order of drafting is shown here

· The plain ends are being drawn on the healds of front and accordingly the lifting plan is maid.

clip_image008

· In order to fully develop the sunken lines the plain should be separated by the slits of the reed

clip_image010

· In some cases however the plain ends are dented accordingly to the type of fineness required.

clip_image012

· Sometimes the plain ends are woven two per slit and cord ends are three or four per slit. The number of ends in the width of a cord has some influence upon the order of denting.

WADDED BEDFORD CORD

This structure contain thick wadding or padding ends which lie between the rib face cloth and the weft floats on the undersides the arrangement to give grater prominence to the cord.

METHOD TO INTRODUCE WADDING ENDS

· First we decide the place at which the wadding ends are introduced

clip_image014

· The wadding ends are raised where the picks floats at the back shown in design and are left down where the picks interweave in plain order.

clip_image016

· In order of interlacement of the picks and position of warps is shown here

DRAFTING AND DENTING

· Here the drawing (drafting) is done in same maner as before only after plain order healdshafts. The wadding ends are drawn and then the cord ends.

clip_image018

· Here while denting is done, like 2 ends per slit the wadding ends being dented extra

clip_image020

· The number of wadding ends to each cord may be varied according to requirement.

OTHER:

· The design may be arranged with an odd number of each (not including the wadding ends) to each cord but it is then necessary to reserve the marks of an alternate pairs of the plain ends in order that the plain weave will join correctly.

clip_image021 clip_image023

SUITABLE WEAVING CONDITION

· Face warp= 30’s Cotton, 108 Ends per inch

· Wadding warp= 2/20’s cotton

· Weft = 36’s cotton, 84 picks per inch

TWILL FACED BEDFORD CORD

· It is an another modification of Bedford cord structure consist of the using warp twill instead of plain weave for the picks which inter weave on the face of the cord stripes.

· Thus the warp being brought more prominently on surface.

· The construction is same like a plain face but the introduction of twill weave in place of plain is take place.

clip_image025

 

WHY CORDS ARE FORMED?

· The structure is formed due to the occurrence of force variations in structure.

· The plain order is highly compact structure here end 6-7 will force the yarn downward due to the plain order.

· And the other region contain plain or twill order with the warp floats which will not force but allow the other ends to move up.

· And this variation of force form the force forms the cord.

 

 

BEDFORD CORD ARRANGED WITH ALTERNATE PICKS

· Bedford cord are also made with alternate picks floating at the back, in which case the pairs of plain ends require to be indicated in the reverse order.

· Here we take an example of 10 end wide cord first the marks of the pairs of plain ends are indicated

clip_image027

· Then the marks which cut with plain marks are inserted on the alternate horizontal spaces.

clip_image029

· Afterwards plain weave is inserted on the blank horizontal spaces of the cords as indicated

clip_image031

· But in this case plain does not join perfectly with the plain marks of the pair of ends

· Wadding ends also may introduce according to the requirement, this wadding ends are shown raised over the picks which floats at the back.

clip_image033

APPLICATION:

· Fabric produced with these weave may be made in medium weight cotton or spun rayon fabrics for Dress wear, Sports-wear and ornamental trimming.

· In heavier qualities, It is suitable for Soft furnishing when produced with cotton yarns or for Suiting when made up of worsted yarns.

· Also used for shirting, coating, upholstery, uniforms etc.

Digg This

Diamond and Diapers


These Designs, from the point of view of their construction, can be regarded as the further development of twill weave.

DIAMONDS

Those that are symmetrical about their vertical and horizontal axes which can be produced with the aid of point draft and vertical waved twilled peg-plan.

DIAPERS

Those that are symmetrical about their diagonal axes, these are based on herringbone draft and vertical waved twilled peg-plan.

Ø Diamond is constructed on wavy twill while Diaper is constructed on herringbone twill.

DIAMOND WEAVE

Principle of Construction:

True diamond shapes converge into a vertex and for this reason most designs of this type can be constructed economically on the point draft basis. The structure may be developed in following two ways:

1. By employing a vertical waved twill or zigzag as the lifting plan in conjunction with the point draft.

clip_image002

By indicating a diamond base and building up the design symmetrically on each side of the centre thread.

clip_image004

· While this represents the same twill arrange to zigzag vertically.

· Two such repeats are given in each direction.

First method is most commonly employed to produce economical diamonds.

DIAPERS CONSTRUCTION

This class of weave will form cut effect or dice effect with the implementation of herringbone twill. This effect is used in ornamentation, shirting, etc.

Principle of Construction:

Ø The simplest weaves of this type are produced as a further development of the herringbone twill, in which the principle of opposing a warp float on the one side of the design by a weft float on the other is extended in both directions, i.e. horizontally and vertically.

Ø In this manner a design is formed in which the typical herringbone cut splits the design into four quarters, the diagonally opposite caters being similar.

Ø These structures are frequently employed as they are capable of forming large design repeats with considerable economy in the number of heald to be used.

clip_image006

v Diapers can also be constructed on the herringbone draft basis provided that the twills from which they were originated fall into a certain specific category the characteristic of such twills are:-

o They are even sided

o Their repeat splits in two halves each of which is symmetrical within itself.

o The lifts in each of the two halves are diametrically opposite

v Even sided twill containing more than two lines of float which do not split in the manner indicae than two lines of float which do not split in the mannner self.

v twills from which they were originated falll ted above cannot be woven with the economical herring bone draft.

v Warp and weft faced twills can also be used to produce diapers on the herring bone reversal but owing to the very prominent quartering of the repeat a distinct check effect is produced and for this reason, such effects are frequently termed as “dice checks”.

v In additional to the herring bone based diapers many other diaper forms can be constructed without a preconceived base.

Difference

Diamond weave Diaper weave
It looks like a diamond It looks like a dice checks
It can be formed by two methods

o Baseline

o Wavy twill

It can be formed by using herring bone twill
Diamond is asymmetrical on both vertically and horizontally. It is only diagonally similar.
This is used for dress material and furnishing fabrics. This is used for dress materials.
This weave is produced with point draft It is not produced with point draft.
Diamond made from 3/3.1/2 Horizontal Waved Twill & Point Draft

clip_image001

Diamond made from 3/3.1/2 Horizontal Waved Twill & Point Draft

clip_image002

***************

Digg This