Short Staple Processing

Yarns are continuous strands of fibers that can be woven or knitted into fabrics. The term, “spinning” refers both to the final yarn-making operation that puts a twist in the yarn and also to the entire sequence of operations that convert raw fibers into usable yarns. Yarn making from staple fibers involves picking (opening, sorting, cleaning, blending), carding and combing (separating and aligning), drawing (re-blending), drafting (drawing into a long strand) and spinning (further drawing and twisting)3. Silk and synthetic filaments are produced by a less extensive procedure. Current high-production yarn-making operations are performed on integrated machines that perform this entire sequence as one combined operation.

Picking (Including Opening and Blending)

Includes the separation of the raw fibers from unwanted material: leaves, twigs, dirt, any remaining seeds, and other foreign items. The fibers are first blended with fibers from different lots or other sources to provide uniformity. (They also may be blended with different fibers to provide improved properties in the final fabric.) When cotton fibers are processed, the raw cotton is run through a cotton ginning operation and then undergoes a cleaning sequence before it is pressed into rectangular bales for shipment to the textile mill. There, the picking starts with a blending machine operation. Bales are opened and cotton from several lots is fed to the machine. The cotton then proceeds to an opening machine that opens tufts of cotton with spiked teeth that pull the fibers apart. Up to three stages of picking follow, after which the cotton is often in the form of a lay, a roll of cotton fiber about 40 in (1 m) wide, 1 n (25 mm) thick and weighing about 40 lb. (18 kg)1. Figs. 1a, 1b and 1c show the lending, opening and picking operations.

Figure 1a: Blending and feeding cotton fibers. Cotton from bales (1), is dropped onto an apron conveyor (2), and moves to another apron conveyor (3), whose surface is covered with spikes. The spikes carry the cotton upward where some of it is knocked off by a ribbed roller(4). The cotton knocked back mixes with cotton carried by the spiked apron. Cotton that passes the knock-back roller is stripped off by another roll (5) and falls (6) to a conveyor that carries it to the next operation. (Illustration used with permission, Dan River Inc.).


Figure 1b: Opening cotton fibers—Cotton from the blending operation falls on an apron conveyor (1) and passes between feeder rolls (2) to a beater cylinder (3). The beater cylinder has rapidly rotating blades that take small tufts of cotton from the feeder rolls, loosen the bunches, remove trash, and move the cotton to the pair of screen rolls (4). The surfaces of these rolls are covered with a screen material. Air is drawn through the screens by a fan (5),pulling the cotton against the screens and forming a web. Small rolls (6), pull the cotton from the screen rolls and deposit it on another conveyor (7), that carries it to another beater (8), that removes more trash. The cotton then moves to the picker operation. (Illustration used with permission, Dan River Inc.)


Figure 1c: Picking cotton fibers—Cotton from the opening operation falls on an apron conveyor (1) which moves it to the first of a series of beaters (2), and screen rolls (3). The beaters and screen rolls in the series are all similar but are progressively more refined as the bottom moves through the equipment. Each beater removes more trash from the cotton. When it reaches the output section (4), the cotton is in the form of a web or lap that is wound into lap roll (5) by winding rolls (6). The lap roll in then ready to be transported to the carding equipment. (Illustration used with permission, Dan River Inc.)


Is a process similar to combing and brushing. It disentangles bunches and locks of fibers and arranges them in a parallel direction. It also further eliminates burrs and other foreign materials and fibers that are too short. The operation is performed on cotton, wool, waste silk,and synthetic staple fibers by a carding machine that consists of a moving conveyor belt with fine wire brushes and a revolving cylinder, also with fine wire hooks or brushes. The fibers from the picking operation are called “picker lap”, and are fed between the belt and the cylinder whose motions pull the fibers in the same direction to form a thin web. The web is
fed into a funnel-like tube that forms it into a round rope-like body about 3/4 in (2 cm) in diameter. This is called a sliver or card sliver. The carding operation is illustrated in Fig.


Figure:Carding cotton fibers—The lap (1) from the picking operation is unrolled and fed by the feed roll (2), to the lickerin roll (3), which has wire shaped like saw teeth. The lickerin roll moves the lap against cleaner bars (4), that remove trash, and passes it to the large cylinder (5). The surface of the large cylinder holds the cotton with thousands of fine wires.The flats (6), with more fine wires, move in the direction opposite to that of the large cylinder.The cotton remains on the large cylinder until it reaches the doffer cylinder (7), which removes it from the large cylinder. A doffer comb (8), vibrates against the doffer cylinder and removes the cotton from it. The cotton, in a filmy web, passes through condenser rolls (9),and into a can through a coiler head (10). The subsequent operation is either combing or drawing. (Illustration used with permission, Dan River Inc.)


Is an additional fiber alignment operation performed on very fine yarns intended for finer fabrics. (Inexpensive and coarser fabrics are made from slivers processed without this further refining.) Fine-tooth combs are applied to the sliver from carding, separating out the shorter fibers, called noils, and aligning the longer fibers to a higher level of parallelism. The resulting strand is called a comb sliver. With its long fibers, the comb sliver provides a smoother, more even yarn.

Drawing (Drafting), (Re-Blending)

After carding and, if performed, combing, several slivers are combined into one strand that is drawn to be longer and thinner. Drawing frames have several pairs of rollers through which he slivers pass. Each successive pair of rollers runs at a higher speed than the preceding pairso that the sliver is pulled longer and thinner as it moves through the drawing frame. The operation is repeated through several stages. The drawing operations produce a product called roving which has less irregularities than the original sliver. Afterward, the finer sliver is given a slight twist and is wound on bobbins. Fig. 10B4 illustrates the drawing operation.Figure


Figure : Drawing—Cans (1), filled with slivers from the carding operation, feed the slivers to the drawing frame. The slivers pass through spoons (2), that guide the slivers and stop the equipment if any should break. The rollers (3), turn successively faster as the slivers move through them, reducing the size of the slivers and increasing their length approximately six fold. At this point, the slivers are combined into one which is deposited into a can (4), by coiler head. The sliver fibers are much more parallel, and the combined sliver is much more uniform after the operation, which is usually repeated for further improvement of the cotton slivers. (Based on an illustration from Dan River, Inc. Used with permission.)

Spinning (Twisting)

Further draws out and twists fibers to join them together in a continuous yarn or thread. The work is performed on a spinning frame after drawing. The twist is important in providing sufficient strength to the yarn because twisting causes the filaments to interlock further with one another. The roving passes first through another set of drafting rolls, resulting in lengthened yarn of the desired thickness.

There are three kinds of spinning frames: ring spinning, open-end (rotor) spinning, and air-jet spinning. With the common ring spinner, the lengthened yarn is fed onto a bobbin or spool on rotating spindle. The winding is controlled by a traveller feed that moves on a ring around the spindle but at a slower speed than that of the spindle. The result is a twisting of the yarn.The yarn guide oscillates axially during winding to distribute the yarn neatly on the bobbin.The yarn can then be used to weave or knit textile fabrics or to make thread, cord or rope.Staple yarns, made from shorter fibers require more twist to provide a sufficiently strong yarn;filaments have less need to be tightly twisted. For any fiber, yarns with a smaller amount of twist produce fabrics with a softer surface; yarns with considerable twist, hard-twisted yarns,provide a fabric with a more wear resistant surface and better resistance to wrinkles and dirt,but with a greater tendency to shrinkage. Hosiery and crepe fabrics are made from hard twisted
yarns. Fig.  illustrates ring spinning.


Figure : Ring spinning. Spun sliver from the drawing operations, which is then called roving, and is wound on bobbins (1), and is fed through another series of drawing rollers (2),that further draw the strand to its final desired thickness. A larger bobbin (4) on a rotating spindle (3), turns at a constant speed. The speed of the final pair of drawing rollers is set a the speed that delivers the yarn so that it is twisted by the desired amount as it is wound on the bobbin. The yarn is guided by the traveller (5), which slides around the bobbin on the ring (6).Because of some drag on the traveller, the yarn winds on the bobbin at the same rate of speed as it is delivered by the final pair of rollers. (Illustration used with permission, Dan RiverInc.)

Spinning Synthetic Fibers

The term “spinning” is also used to refer to the extrusion process of making synthetic fibbers forcing a liquid or semi-liquid polymer (or modified polymer, e.g., rayon) through small holes in an extrusion die, called a spinneret, and then cooling, drying or coagulating the resulting filaments. The fibers are then drawn to a greater length to align the molecules. This increases their strength. The monofilament fibres may be used directly as-is, or may be cut into shorter lengths, crimped into irregular shapes and spun with methods similar to thoseused with natural fibers. These steps are taken to give the synthetic yarns the same feel and
appearance as natural yarns when they are made into thread, garments and other textile products. (Section A2, above, describes wet and dry spinning methods of making rayon and acetate fibers.)

Digg This

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s